6 resultados para Wang, Haojing, 17th cent.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Objectives - To assess the general public's interpretation of the verbal descriptors for side effect frequency recommended for use in medicine information leaflets by a European Union (EU) guideline, and to examine the extent to which differences in interpretation affect people's perception of risk and their judgments of intention to comply with the prescribed treatment. Method - Two studies used a controlled empirical methodology in which people were presented with a hypothetical, but realistic, scenario about visiting their general practitioner and being prescribed medication. They were given an explanation that focused on the side effects of the medicine, together with information about the probability of occurrence using either numerical percentages or the corresponding EU verbal descriptors. Interpretation of the descriptors was assessed. In study 2, participants were also required to make various judgments, including risk to health and intention to comply. Key findings - In both studies, use of the EU recommended descriptors led to significant overestimations of the likelihood of particular side effects occurring. Study 2 further showed that the "overestimation" resulted in significantly increased ratings of perceived severity of side effects and risk to health, as well as significantly reduced ratings of intention to comply, compared with those for people who received the probability information in numerical form. Conclusion - While it is recognised that the current findings require replication in a clinical setting, the European and national authorities should suspend the use of the EU recommended terms until further research is available to allow the use of an evidence-based approach.
Resumo:
One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in near‐Earth space, arising from both quasi‐steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the Wang‐Sheeley‐Arge (WSA) empirical model. The mean‐square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate “figure of merit” for assessing solar wind speed predictions. A complementary, event‐based analysis technique is developed in which high‐speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.