5 resultados para Wanderheuschrecken, Flugstoffwechsel, Locusta migratoria, Flugmuskulatur, Trehalose, Trehalaseaktivität

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ectomycorrhizal fungi have been shown to survive sub-zero temperatures in axenic culture and in the field. However, the physiological basis for resistance to freezing is poorly understood. In order to survive freezing, mycelia must synthesise compounds that pro-tect the cells from frost damage, and certain fungal-spe-cific soluble carbohydrates have been implicated in this role. Tissue concentrations of arabitol, mannitol and trehalose were measured in axenic cultures of eight Hebeloma strains of arctic and temperate origin grown at 22, 12, 6 and 2°C. In a separate experiment, mycelia were frozen to –5°C after pre-conditioning at either 2°C or 22°C. For some, especially temperate strains, there was a clear increase in specific soluble carbohydrates at lower growth temperatures. Trehalose and mannitol were present in all strains and the highest concentrations (close to 2.5% and 0.5% dry wt.) were recorded only after a cold period. Arabitol was found in four strains only when grown at low temperature. Cold pre-condi-tioning enhanced recovery of mycelia following freez-ing. In four out of eight strains, this was paralleled by increases in mannitol and trehalose concentration at low temperature that presumably contribute towards cryopro-tection. The results are discussed in an ecological con-text with regard to mycelial overwintering in soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Live bacterial vaccines have great promise both as vaccines against enteric pathogens and as heterologous antigen vectors against diverse diseases. Ideally, room temperature stable dry formulations of live bacterial vaccines will allow oral vaccination without cold-chain storage or injections. Attenuated Salmonella can cross the intestinal wall and deliver replicating antigen plus innate immune activation signals directly to the intestinal immune tissues, however the ingested bacteria must survive firstly gastric acid and secondly the antimicrobial defences of the small intestine. We found that the way in which cells are grown prior to formulation markedly affects sensitivity to acid and bile. Using a previously published stable storage formulation that maintained over 10% viability after 56 days storage at room temperature, we found dried samples of an attenuated S. typhimurium vaccine lost acid and bile resistance compared to the same bacteria taken from fresh culture. The stable formulation utilised osmotic preconditioning in defined medium plus elevated salt concentration to induce intracellular trehalose accumulation before drying. Dried bacteria grown in rich media without osmotic preconditioning showed more resistance to bile, but less stability during storage, suggesting a trade-off between bile resistance and stability. Further optimization is needed to produce the ultimate room-temperature stable oral live bacterial vaccine formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the effects of the medium and cryoprotective agents used on the growth and survival of Lactobacillus plantarum and Lactobacillus rhamnosus GG during freeze drying. A complex medium was developed consisting primarily of glucose, yeast extract and vegetable-derived peptone. Trehalose, sucrose and sorbitol were examined for their ability to protect the cells during freeze drying. Using standardized amount of cells and the optimized freeze drying media, the effect of the growth medium on cell survival during freeze drying was investigated. The results showed that glucose and yeast extract were the most important growth factors, while sucrose offered better protection than trehalose and sorbitol during freeze drying. When the cells were grown under carbon limiting conditions, their survival during freeze drying was significantly decreased. A clear relationship was observed between cell growth and the ability of the cells to survive during the freeze drying process. The survival of probiotic strains during freeze drying was shown to be dependent on the cryoprotectant used and the growth medium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review current knowledge of the most abundant sugars, sucrose, maltose, glucose and fructose, in the world's major crop plants. The sucrose-accumulating crops, sugar beet and sugar cane, are included, but the main focus of the review is potato and the major cereal crops. The production of sucrose in photosynthesis and the inter-relationships of sucrose, glucose, fructose and other metabolites in primary carbon metabolism are described, as well as the synthesis of starch, fructan and cell wall polysaccharides and the breakdown of starch to produce maltose. The importance of sugars as hormone-like signalling molecules is discussed, including the role of another sugar, trehalose, and the trehalose biosynthetic pathway. The Maillard reaction, which occurs between reducing sugars and amino acids during thermal processing, is described because of its importance for colour and flavour in cooked foods. This reaction also leads to the formation of potentially harmful compounds, such as acrylamide, and is attracting increasing attention as food producers and regulators seek to reduce the levels of acrylamide in cooked food. Genetic and environmental factors affecting sugar concentrations are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salmonella enterica is a zoonotic pathogen of clinical and veterinary significance, with over 2500 serovars. In previous work we compared two serovars displaying host associations inferred from isolation statistics. Here, to validate genome sequence data and to expand on the role of environmental metabolite constitution in host range determination we use a phenotypic microarray approach to assess the ability of these serovars to metabolise ~500 substrates at 25°C with oxygen (aerobic conditions) to represent the ex vivo environment and at 37°C with and without oxygen (aerobic/anaerobic conditions) to represent the in vivo environment. A total of 26 substrates elicited a significant difference in the rate of metabolism of which only one, D-galactonic acid-g-lactone, could be explained by the presence (S. Mbandaka) or the absence (S. Derby) of metabolic genes. We find that S. Mbandaka respires more efficiently at ambient temperatures and under aerobic conditions on 18 substrates including: glucosominic acid, saccharic acid, trehalose, fumaric acid, maltotriose, N-acetyl-D-glucosamine, N-acetyl-beta-D-mannosamine, fucose, L-serine and dihydroxy-acetone; whereas S. Derby is more metabolically competent anaerobically at 37°C for dipeptides, glutamine-glutamine, alanine-lysine, asparagine-glutamine and nitrogen sources glycine and nitrite. We conclude that the specific phenotype cannot be reliably predicted from the presence of metabolic genes directly relating to the metabolic pathways under study.