4 resultados para WEIBULL-DISTRIBUTION
em CentAUR: Central Archive University of Reading - UK
Resumo:
A novel statistic for local wave amplitude of the 500-hPa geopotential height field is introduced. The statistic uses a Hilbert transform to define a longitudinal wave envelope and dynamical latitude weighting to define the latitudes of interest. Here it is used to detect the existence, or otherwise, of multimodality in its distribution function. The empirical distribution function for the 1960-2000 period is close to a Weibull distribution with shape parameters between 2 and 3. There is substantial interdecadal variability but no apparent local multimodality or bimodality. The zonally averaged wave amplitude, akin to the more usual wave amplitude index, is close to being normally distributed. This is consistent with the central limit theorem, which applies to the construction of the wave amplitude index. For the period 1960-70 it is found that there is apparent bimodality in this index. However, the different amplitudes are realized at different longitudes, so there is no bimodality at any single longitude. As a corollary, it is found that many commonly used statistics to detect multimodality in atmospheric fields potentially satisfy the assumptions underlying the central limit theorem and therefore can only show approximately normal distributions. The author concludes that these techniques may therefore be suboptimal to detect any multimodality.
Resumo:
Large waves pose risks to ships, offshore structures, coastal infrastructure and ecosystems. This paper analyses 10 years of in-situ measurements of significant wave height (Hs) and maximum wave height (Hmax) from the ocean weather ship Polarfront in the Norwegian Sea. During the period 2000 to 2009, surface elevation was recorded every 0.59 s during sampling periods of 30 min. The Hmax observations scale linearly with Hs on average. A widely-used empirical Weibull distribution is found to estimate average values of Hmax/Hs and Hmax better than a Rayleigh distribution, but tends to underestimate both for all but the smallest waves. In this paper we propose a modified Rayleigh distribution which compensates for the heterogeneity of the observed dataset: the distribution is fitted to the whole dataset and improves the estimate of the largest waves. Over the 10-year period, the Weibull distribution approximates the observed Hs and Hmax well, and an exponential function can be used to predict the probability distribution function of the ratio Hmax/Hs. However, the Weibull distribution tends to underestimate the occurrence of extremely large values of Hs and Hmax. The persistence of Hs and Hmax in winter is also examined. Wave fields with Hs>12 m and Hmax>16 m do not last longer than 3 h. Low-to-moderate wave heights that persist for more than 12 h dominate the relationship of the wave field with the winter NAO index over 2000–2009. In contrast, the inter-annual variability of wave fields with Hs>5.5 m or Hmax>8.5 m and wave fields persisting over ~2.5 days is not associated with the winter NAO index.
Resumo:
The England and Wales precipitation (EWP) dataset is a homogeneous time series of daily accumulations from 1931 to 2014, composed from rain gauge observations spanning the region. The daily regional-average precipitation statistics are shown to be well described by a Weibull distribution, which is used to define extremes in terms of percentiles. Computed trends in annual and seasonal precipitation are sensitive to the period chosen, due to large variability on interannual and decadal timescales. Atmospheric circulation patterns associated with seasonal precipitation variability are identified. These patterns project onto known leading modes of variability, all of which involve displacements of the jet stream and storm-track over the eastern Atlantic. The intensity of daily precipitation for each calendar season is investigated by partitioning all observations into eight intensity categories contributing equally to the total precipitation in the dataset. Contrary to previous results based on shorter periods, no significant trends of the most intense categories are found between 1931 and 2014. The regional-average precipitation is found to share statistical properties common to the majority of individual stations across England and Wales used in previous studies. Statistics of the EWP data are examined for multi-day accumulations up to 10 days, which are more relevant for river flooding. Four recent years (2000, 2007, 2008 and 2012) have a greater number of extreme events in the 3-and 5-day accumulations than any previous year in the record. It is the duration of precipitation events in these years that is remarkable, rather than the magnitude of the daily accumulations.
Resumo:
Heterogeneity in lifetime data may be modelled by multiplying an individual's hazard by an unobserved frailty. We test for the presence of frailty of this kind in univariate and bivariate data with Weibull distributed lifetimes, using statistics based on the ordered Cox-Snell residuals from the null model of no frailty. The form of the statistics is suggested by outlier testing in the gamma distribution. We find through simulation that the sum of the k largest or k smallest order statistics, for suitably chosen k , provides a powerful test when the frailty distribution is assumed to be gamma or positive stable, respectively. We provide recommended values of k for sample sizes up to 100 and simple formulae for estimated critical values for tests at the 5% level.