47 resultados para Voltage disturbance detection and classification
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.
Resumo:
In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database.
Resumo:
Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.
Resumo:
The distribution of sulphate-reducing bacteria (SRB) in the sediments of the Colne River estuary, Essex, UK covering different saline concentrations of sediment porewater was investigated by the use of quantitative competitive PCR. Here, we show that a new PCR primer set and a new quantitative method using PCR are useful tools for the detection and the enumeration of SRB in natural environments. A PCR primer set selective for the dissimilatory sulphite reductase gene (dsr) of SRB was designed. PCR amplification using the single set of dsr-specific primers resulted in PCR products of the expected size from all 27 SRB strains tested, including Gram-negative and positive species. Sixty clones derived from sediment DNA using the primers were sequenced and all were closely related with the predicted dsr of SRB. These results indicate that PCR using the newly designed primer set are useful for the selective detection of SRB from a natural sample. This primer set was used to estimate cell numbers by dsr selective competitive PCR using a competitor, which was about 20% shorter than the targeted region of dsr. This procedure was applied to sediment samples from the River Colne estuary, Essex, UK together with simultaneous measurement of in situ rates of sulphate reduction. High densities of SRB ranging from 0.2 - 5.7 × 108 cells ml-1 wet sediment were estimated by the competitive PCR assuming that all SRB have a single copy of dsr. Using these estimates cell specific sulphate reduction rates of 10-17 to 10-15 mol of SO42- cell-1 day-1 were calculated, which is within the range of, or lower than, those previously reported for pure cultures of SRB. Our results show that the newly developed competitive PCR technique targeted to dsr is a powerful tool for rapid and reproducible estimation of SRB numbers in situ and is superior to the use of culture-dependent techniques.
Resumo:
A technique is presented for locating and tracking objects in cluttered environments. Agents are randomly distributed across the image, and subsequently grouped around targets. Each agent uses a weightless neural network and a histogram intersection technique to score its location. The system has been used to locate and track a head in 320x240 resolution video at up to 15fps.
Resumo:
This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.
Resumo:
In this work a hybrid technique that includes probabilistic and optimization based methods is presented. The method is applied, both in simulation and by means of real-time experiments, to the heating unit of a Heating, Ventilation Air Conditioning (HVAC) system. It is shown that the addition of the probabilistic approach improves the fault diagnosis accuracy.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.
Resumo:
This paper specifically examines the implantation of a microelectrode array into the median nerve of the left arm of a healthy male volunteer. The objective was to establish a bi-directional link between the human nervous system and a computer, via a unique interface module. This is the first time that such a device has been used with a healthy human. The aim of the study was to assess the efficacy, compatibility, and long term operability of the neural implant in allowing the subject to perceive feedback stimulation and for neural activity to be detected and processed such that the subject could interact with remote technologies. A case study demonstrating real-time control of an instrumented prosthetic hand by means of the bi-directional link is given. The implantation did not result in infection, and scanning electron microscope images of the implant post extraction have not indicated significant rejection of the implant by the body. No perceivable loss of hand sensation or motion control was experienced by the subject while the implant was in place, and further testing of the subject following the removal of the implant has not indicated any measurable long term defects. The implant was extracted after 96 days. Copyright © 2004 John Wiley & Sons, Ltd.