11 resultados para Volcanoes.

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the Soufrière Hills eruption, vulcanian explosions have generally occurred 1) in episodic cycles; 2) isolated during pauses in extrusion, and 3) after major collapses of the dome. In a different eruptive context, significant vulcanian explosions occurred on 29 July 2008, 3 December 2008, and 3 January 2009. Deposits are pumiceous except for the 3 December event. We reconstructed the dispersal pattern of the deposits and their textural characteristics to evaluate erupted volume and vesicularity of the magma at fragmentation. We discuss the implications of these explosions in terms of eruptive processes and chronology, and the hazards posed by their sudden and often unheralded occurrence. We suggest that overpressurization of the conduit can develop over time-scales of months to weeks by a process of self-sealing of conduit walls and/or the cooling dome by silica polymorphs. This work provides new insights for understanding the generation of hazardous vulcanian explosions at andesitic volcanoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have applied time series analytical techniques to the flux of lava from an extrusive eruption. Tilt data acting as a proxy for flux are used in a case study of the May–August 1997 period of the eruption at Soufrière Hills Volcano, Montserrat. We justify the use of such a proxy by simple calibratory arguments. Three techniques of time series analysis are employed: spectral, spectrogram and wavelet methods. In addition to the well-known ~9-hour periodicity shown by these data, a previously unknown periodic flux variability is revealed by the wavelet analysis as a 3-day cycle of frequency modulation during June–July 1997, though the physical mechanism responsible is not clear. Such time series analysis has potential for other lava flux proxies at other types of volcanoes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution satellite radar observations of erupting volcanoes can yield valuable information on rapidly changing deposits and geomorphology. Using the TerraSAR-X (TSX) radar with a spatial resolution of about 2 m and a repeat interval of 11-days, we show how a variety of techniques were used to record some of the eruptive history of the Soufriere Hills Volcano, Montserrat between July 2008 and February 2010. After a 15-month pause in lava dome growth, a vulcanian explosion occurred on 28 July 2008 whose vent was hidden by dense cloud. We were able to show the civil authorities using TSX change difference images that this explosion had not disrupted the dome sufficient to warrant continued evacuation. Change difference images also proved to be valuable in mapping new pyroclastic flow deposits: the valley-occupying block-and-ash component tending to increase backscatter and the marginal surge deposits reducing it, with the pattern reversing after the event. By comparing east- and west-looking images acquired 12 hours apart, the deposition of some individual pyroclastic flows can be inferred from change differences. Some of the narrow upper sections of valleys draining the volcano received many tens of metres of rockfall and pyroclastic flow deposits over periods of a few weeks. By measuring the changing shadows cast by these valleys in TSX images the changing depth of infill by deposits could be estimated. In addition to using the amplitude data from the radar images we also used their phase information within the InSAR technique to calculate the topography during a period of no surface activity. This enabled areas of transient topography, crucial for directing future flows, to be captured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volume determination of tephra deposits is necessary for the assessment of the dynamics and hazards of explosive volcanoes. Several methods have been proposed during the past 40 years that include the analysis of crystal concentration of large pumices, integrations of various thinning relationships, and the inversion of field observations using analytical and computational models. Regardless of their strong dependence on tephra-deposit exposure and distribution of isomass/isopach contours, empirical integrations of deposit thinning trends still represent the most widely adopted strategy due to their practical and fast application. The most recent methods involve the best fitting of thinning data using various exponential seg- ments or a power-law curve on semilog plots of thickness (or mass/area) versus square root of isopach area. The exponential method is mainly sensitive to the number and the choice of straight segments, whereas the power-law method can better reproduce the natural thinning of tephra deposits but is strongly sensitive to the proximal or distal extreme of integration. We analyze a large data set of tephra deposits and propose a new empirical method for the deter- mination of tephra-deposit volumes that is based on the integration of the Weibull function. The new method shows a better agreement with observed data, reconciling the debate on the use of the exponential versus power-law method. In fact, the Weibull best fitting only depends on three free parameters, can well reproduce the gradual thinning of tephra deposits, and does not depend on the choice of arbitrary segments or of arbitrary extremes of integration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of volcanoes extruding andesitic lava to produce lava domes often reveal cyclic behaviour. At Soufriere Hills Volcano, Montserrat, cycles with sub-daily and multi-week periods have been recognised on many occasions. These two types of cycle have been modelled separately as stick-slip magma flow at the junction between a dyke and an overlying cylindrical conduit (Costa et al. 2012), and as the filling and discharge of magma through the elastic-walled dyke (Costa et al., 2007a) respectively. Here, we couple these two models to simulate the behaviour over a period of well-observed multi-week cycles, with accompanying sub-daily cycles, from 13 May to 21 September 1997. The coupled model captures well the asymmetrical first-order behaviour: the first 40% of the multi-week cycle consists of high rates of lava extrusion during short period/high amplitude sub-daily cycles as the dyke reservoir discharges itself. The remainder of the cycle involves increasing pressurization as more magma is stored, and extrusion rate falls, followed by a gradual increase in the period of the sub-daily cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural aerosol plays a significant role in the Earth’s system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calculate large annual global mean aerosol direct and cloud albedo effects especially for DMS-derived sulfate (–0.23 Wm–2 and –0.76 Wm–2, respectively), volcanic sulfate (–0.21 Wm–2 and –0.61 Wm–2) and sea-salt (–0.44 Wm–2 and –0.04 Wm–2). The cloud albedo effect responds nonlinearly to changes in emission source strengths. The natural sources have both markedly different radiative efficiencies and indirect/direct radiative effect ratios. Aerosol sources that contribute a large number of small particles (DMS-derived and volcanic sulfate) are highly effective at influencing cloud albedo per unit of aerosol mass burden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eyjafjallajökull volcano in Iceland emitted a cloud of ash into the atmosphere during April and May 2010. Over the UK the ash cloud was observed by the FAAM BAe-146 Atmospheric Research Aircraft which was equipped with in-situ probes measuring the concentration of volcanic ash carried by particles of varying sizes. The UK Met Office Numerical Atmospheric-dispersion Modelling Environment (NAME) has been used to simulate the evolution of the ash cloud emitted by the Eyjafjallajökull volcano during the period 4–18 May 2010. In the NAME simulations the processes controlling the evolution of the concentration and particle size distribution include sedimentation and deposition of particles, horizontal dispersion and vertical wind shear. For travel times between 24 and 72 h, a 1/t relationship describes the evolution of the concentration at the centre of the ash cloud and the particle size distribution remains fairly constant. Although NAME does not represent the effects of microphysical processes, it can capture the observed decrease in concentration with travel time in this period. This suggests that, for this eruption, microphysical processes play a small role in determining the evolution of the distal ash cloud. Quantitative comparison with observations shows that NAME can simulate the observed column-integrated mass if around 4% of the total emitted mass is assumed to be transported as far as the UK by small particles (< 30 μm diameter). NAME can also simulate the observed particle size distribution if a distal particle size distribution that contains a large fraction of < 10 μm diameter particles is used, consistent with the idea that phraetomagmatic volcanoes, such as Eyjafjallajökull, emit very fine particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inter-bedded volcanic and organic sediments from Erazo (Ecuador) indicate the presence of four different forest assemblages on the eastern Andean flank during the middle Pleistocene. Radiometric dates (40Ar–39Ar) obtained fromthe volcanic ash indicate that deposition occurred between 620,000 and 192,000 years ago. Examination of the organic sediment composition and the fossil pollen, wood and charcoal it contains provides insight into depositional environment, vegetation assemblage and fire history. The high organic content and abundance of macro fossils found throughout the sediment suggest that during the period of deposition the local environment was either a swamp or a shallow water body. The correlation of fire activity (peaks in charcoal abundance) with volcanic ash deposits through most of the record suggests that volcanoes were the main source of ignition. The low abundance of grass (typically b10%) throughout the sedimentary sequence along with the low abundance of other taxa indicative of open vegetation suggests the persistence of forest at Erazo. Four types of forest assemblage were identified (with the first taxa as the most dominant): i) Alnus-Arecaceae, ii) Miconia- Melastomataceae/Combretaceae-Moraceae/Urticaceae, iii) Arecaceae-Alnus, and iv) Podocarpus with Oreopanax sp. and Melastomataceae/Combretaceae. Changes in the forest floristic composition indicate high vegetation turnover and reassortment of taxa between upper and lower montane forests during the middle Pleistocene as well as the persistence of forest cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A data insertion method, where a dispersion model is initialized from ash properties derived from a series of satellite observations, is used to model the 8 May 2010 Eyjafjallajökull volcanic ash cloud which extended from Iceland to northern Spain. We also briefly discuss the application of this method to the April 2010 phase of the Eyjafjallajökull eruption and the May 2011 Grímsvötn eruption. An advantage of this method is that very little knowledge about the eruption itself is required because some of the usual eruption source parameters are not used. The method may therefore be useful for remote volcanoes where good satellite observations of the erupted material are available, but little is known about the properties of the actual eruption. It does, however, have a number of limitations related to the quality and availability of the observations. We demonstrate that, using certain configurations, the data insertion method is able to capture the structure of a thin filament of ash extending over northern Spain that is not fully captured by other modeling methods. It also verifies well against the satellite observations according to the quantitative object-based quality metric, SAL—structure, amplitude, location, and the spatial coverage metric, Figure of Merit in Space.