96 resultados para Visual-system Model
em CentAUR: Central Archive University of Reading - UK
Resumo:
We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions. The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5), so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight. This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.
Resumo:
The predictability of high impact weather events on multiple time scales is a crucial issue both in scientific and socio-economic terms. In this study, a statistical-dynamical downscaling (SDD) approach is applied to an ensemble of decadal hindcasts obtained with the Max-Planck-Institute Earth System Model (MPI-ESM) to estimate the decadal predictability of peak wind speeds (as a proxy for gusts) over Europe. Yearly initialized decadal ensemble simulations with ten members are investigated for the period 1979–2005. The SDD approach is trained with COSMO-CLM regional climate model simulations and ERA-Interim reanalysis data and applied to the MPI-ESM hindcasts. The simulations for the period 1990–1993, which was characterized by several windstorm clusters, are analyzed in detail. The anomalies of the 95 % peak wind quantile of the MPI-ESM hindcasts are in line with the positive anomalies in reanalysis data for this period. To evaluate both the skill of the decadal predictability system and the added value of the downscaling approach, quantile verification skill scores are calculated for both the MPI-ESM large-scale wind speeds and the SDD simulated regional peak winds. Skill scores are predominantly positive for the decadal predictability system, with the highest values for short lead times and for (peak) wind speeds equal or above the 75 % quantile. This provides evidence that the analyzed hindcasts and the downscaling technique are suitable for estimating wind and peak wind speeds over Central Europe on decadal time scales. The skill scores for SDD simulated peak winds are slightly lower than those for large-scale wind speeds. This behavior can be largely attributed to the fact that peak winds are a proxy for gusts, and thus have a higher variability than wind speeds. The introduced cost-efficient downscaling technique has the advantage of estimating not only wind speeds but also estimates peak winds (a proxy for gusts) and can be easily applied to large ensemble datasets like operational decadal prediction systems.
Resumo:
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.
Resumo:
The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.
Resumo:
In an immersive virtual environment, observers fail to notice the expansion of a room around them and consequently make gross errors when comparing the size of objects. This result is difficult to explain if the visual system continuously generates a 3-D model of the scene based on known baseline information from interocular separation or proprioception as the observer walks. An alternative is that observers use view-based methods to guide their actions and to represent the spatial layout of the scene. In this case, they may have an expectation of the images they will receive but be insensitive to the rate at which images arrive as they walk. We describe the way in which the eye movement strategy of animals simplifies motion processing if their goal is to move towards a desired image and discuss dorsal and ventral stream processing of moving images in that context. Although many questions about view-based approaches to scene representation remain unanswered, the solutions are likely to be highly relevant to understanding biological 3-D vision.
Resumo:
As we move through the world, our eyes acquire a sequence of images. The information from this sequence is sufficient to determine the structure of a three-dimensional scene, up to a scale factor determined by the distance that the eyes have moved [1, 2]. Previous evidence shows that the human visual system accounts for the distance the observer has walked [3,4] and the separation of the eyes [5-8] when judging the scale, shape, and distance of objects. However, in an immersive virtual-reality environment, observers failed to notice when a scene expanded or contracted, despite having consistent information about scale from both distance walked and binocular vision. This failure led to large errors in judging the size of objects. The pattern of errors cannot be explained by assuming a visual reconstruction of the scene with an incorrect estimate of interocular separation or distance walked. Instead, it is consistent with a Bayesian model of cue integration in which the efficacy of motion and disparity cues is greater at near viewing distances. Our results imply that observers are more willing to adjust their estimate of interocular separation or distance walked than to accept that the scene has changed in size.
Resumo:
It has long been assumed that there is a distorted mapping between real and ‘perceived’ space, based on demonstrations of systematic errors in judgements of slant, curvature, direction and separation. Here, we have applied a direct test to the notion of a coherent visual space. In an immersive virtual environment, participants judged the relative distance of two squares displayed in separate intervals. On some trials, the virtual scene expanded by a factor of four between intervals although, in line with recent results, participants did not report any noticeable change in the scene. We found that there was no consistent depth ordering of objects that can explain the distance matches participants made in this environment (e.g. A > B > D yet also A < C < D) and hence no single one-to-one mapping between participants’ perceived space and any real 3D environment. Instead, factors that affect pairwise comparisons of distances dictate participants’ performance. These data contradict, more directly than previous experiments, the idea that the visual system builds and uses a coherent 3D internal representation of a scene.
Resumo:
Data assimilation aims to incorporate measured observations into a dynamical system model in order to produce accurate estimates of all the current (and future) state variables of the system. The optimal estimates minimize a variational principle and can be found using adjoint methods. The model equations are treated as strong constraints on the problem. In reality, the model does not represent the system behaviour exactly and errors arise due to lack of resolution and inaccuracies in physical parameters, boundary conditions and forcing terms. A technique for estimating systematic and time-correlated errors as part of the variational assimilation procedure is described here. The modified method determines a correction term that compensates for model error and leads to improved predictions of the system states. The technique is illustrated in two test cases. Applications to the 1-D nonlinear shallow water equations demonstrate the effectiveness of the new procedure.
Resumo:
Much is known about the functional mechanisms involved in visual search. Yet, the fundamental question of whether the visual system can perform different types of visual analysis at different spatial resolutions still remains unsettled. In the visual-attention literature, the distinction between different spatial scales of visual processing corresponds to the distinction between distributed and focused attention. Some authors have argued that singleton detection can be performed in distributed attention, whereas others suggest that even such a simple visual operation involves focused attention. Here we showed that microsaccades were spatially biased during singleton discrimination but not during singleton detection. The results provide support to the hypothesis that some coarse visual analysis can be performed in a distributed attention mode.
Resumo:
Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.
Resumo:
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.
Resumo:
The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.
Resumo:
Future land cover will have a significant impact on climate and is strongly influenced by the extent of agricultural land use. Differing assumptions of crop yield increase and carbon pricing mitigation strategies affect projected expansion of agricultural land in future scenarios. In the representative concentration pathway 4.5 (RCP4.5) from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the carbon effects of these land cover changes are included, although the biogeophysical effects are not. The afforestation in RCP4.5 has important biogeophysical impacts on climate, in addition to the land carbon changes, which are directly related to the assumption of crop yield increase and the universal carbon tax. To investigate the biogeophysical climatic impact of combinations of agricultural crop yield increases and carbon pricing mitigation, five scenarios of land-use change based on RCP4.5 are used as inputs to an earth system model [Hadley Centre Global Environment Model, version 2-Earth System (HadGEM2-ES)]. In the scenario with the greatest increase in agricultural land (as a result of no increase in crop yield and no climate mitigation) there is a significant -0.49 K worldwide cooling by 2100 compared to a control scenario with no land-use change. Regional cooling is up to -2.2 K annually in northeastern Asia. Including carbon feedbacks from the land-use change gives a small global cooling of -0.067 K. This work shows that there are significant impacts from biogeophysical land-use changes caused by assumptions of crop yield and carbon mitigation, which mean that land carbon is not the whole story. It also elucidates the potential conflict between cooling from biogeophysical climate effects of land-use change and wider environmental aims.
Resumo:
The atmospheric carbon dioxide concentration plays a crucial role in the radiative balance and as such has a strong influence on the evolution of climate. Because of the numerous interactions between climate and the carbon cycle, it is necessary to include a model of the carbon cycle within a climate model to understand and simulate past and future changes of the carbon cycle. In particular, natural variations of atmospheric CO2 have happened in the past, while anthropogenic carbon emissions are likely to continue in the future. To study changes of the carbon cycle and climate on timescales of a few hundred to a few thousand years, we have included a simple carbon cycle model into the iLOVECLIM Earth System Model. In this study, we describe the ocean and terrestrial biosphere carbon cycle models and their performance relative to observational data. We focus on the main carbon cycle variables including the carbon isotope ratios δ13C and the Δ14C. We show that the model results are in good agreement with modern observations both at the surface and in the deep ocean for the main variables, in particular phosphates, dissolved inorganic carbon and the carbon isotopes.