5 resultados para Virtual Power Player

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We measured the movements of soccer players heading a football in a fully immersive virtual reality environment. In mid-flight the ball’s trajectory was altered from its normal quasi-parabolic path to a linear one, producing a jump in the rate of change of the angle of elevation of gaze (α) from player to ball. One reaction time later the players adjusted their speed so that the rate of change of α increased when it had been reduced and reduced it when it had been increased. Since the result of the player’s movement was to regain a value of the rate of change close to that before the disturbance, the data suggest that the players have an expectation of, and memory for, the pattern that the rate of change of α will follow during the flight. The results support the general claim that players intercepting balls use servo control strategies and are consistent with the particular claim of Optic Acceleration Cancellation theory that the servo strategy is to allow α to increase at a steadily decreasing rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ever since man invented writing he has used text to store and distribute his thoughts. With the advent of computers and the Internet the delivery of these messages has become almost instant. Textual conversations can now be had regardless of location or distance. Advances in computational power for 3D graphics are enabling Virtual Environments(VE) within which users can become increasingly more immersed. By opening these environments to other users such as initially through sharing these text conversations channels, we aim to extend the immersed experience into an online virtual community. This paper examines work that brings textual communications into the VE, enabling interaction between the real and virtual worlds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In collaborative situations, eye gaze is a critical element of behavior which supports and fulfills many activities and roles. In current computer-supported collaboration systems, eye gaze is poorly supported. Even in a state-of-the-art video conferencing system such as the access grid, although one can see the face of the user, much of the communicative power of eye gaze is lost. This article gives an overview of some preliminary work that looks towards integrating eye gaze into an immersive collaborative virtual environment and assessing the impact that this would have on interaction between the users of such a system. Three experiments were conducted to assess the efficacy of eye gaze within immersive virtual environments. In each experiment, subjects observed on a large screen the eye-gaze behavior of an avatar. The eye-gaze behavior of that avatar had previously been recorded from a user with the use of a head-mounted eye tracker. The first experiment was conducted to assess the difference between users' abilities to judge what objects an avatar is looking at with only head gaze being viewed and also with eye- and head-gaze data being displayed. The results from the experiment show that eye gaze is of vital importance to the subjects, correctly identifying what a person is looking at in an immersive virtual environment. The second experiment examined whether a monocular or binocular eye-tracker would be required. This was examined by testing subjects' ability to identify where an avatar was looking from their eye direction alone, or by eye direction combined with convergence. This experiment showed that convergence had a significant impact on the subjects' ability to identify where the avatar was looking. The final experiment looked at the effects of stereo and mono-viewing of the scene, with the subjects being asked to identify where the avatar was looking. This experiment showed that there was no difference in the subjects' ability to detect where the avatar was gazing. This is followed by a description of how the eye-tracking system has been integrated into an immersive collaborative virtual environment and some preliminary results from the use of such a system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a virtual headstick system as an alternative to the conventional passive headstick for persons with limited upper extremity function. The system is composed of a pair of kinematically dissimilar master-slave robots with the master robot being operated by the user's head. At the remote site, the end-effector of the slave robot moves as if it were at the tip of an imaginary headstick attached to the user's head. A unique feature of this system is that through force-reflection, the virtual headstick provides the user with proprioceptive information as in a conventional headstick, but with an augmentation of workspace volume and additional mechanical power. This paper describes the test-bed development, system identification, bilateral control implementation, and system performance evaluation.