3 resultados para Vigotsky, Lev

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levetiracetam (LEV) is a prominent antiepileptic drug (AED) which binds to neuronal synaptic vesicle glycoprotein 2A (SV2A) protein and has reported effects on ion channels, but retains a poorly-defined mechanism of action. Here, we investigate inhibition of voltage-dependent Ca2+ (CaV) channels as a potential mechanism by which LEV imparts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and CaV channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated effects of the LEV ‘inactive’ R-enantiomer, UCB L060. Thus, LEV, but not UCB L060 (each 100 μM), inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials (EPSP) following ≥30 min application. In isolated SCGNs, LEV pretreatment (≥1 h), but not acute (5 min) application, significantly inhibited whole-cell IBa amplitude. In current clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential (AHP) in a Ca2+-dependent manner, but also increased action potential (AP) latency in a Ca2+-independent manner, suggesting further mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused a rapid inhibition of IBa amplitude to an extent comparable to that seen following extracellular LEV pretreatment ( ≥ 1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on IBa amplitude. These results identify a stereospecific intracellular pathway by which LEV inhibits presynaptic CaV channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal of the Palaeoclimate Modelling Intercomparison Project (PMIP) is to understand the response of the climate system to changes in different climate forcings and to feedbacks. Through comparison with observations of the environmental impacts of these climate changes, or with climate reconstructions based on physical, chemical or biological records, PMIP also addresses the issue of how well state-of-the-art models simulate climate changes. Palaeoclimate states are radically different from those of the recent past documented by the instrumental record and thus provide an out-of-sample test of the models used for future climate projections and a way to assess whether they have the correct sensitivity to forcings and feedbacks. Five distinctly different periods have been selected as focus for the core palaeoclimate experiments that are designed to contribute to the objectives of the sixth phase of the Coupled Model Intercomparison Project (CMIP6). This manuscript describes the motivation for the choice of these periods and the design of the numerical experiments, with a focus upon their novel features compared to the experiments performed in previous phases of PMIP and CMIP as well as the benefits of common analyses of the models across multiple climate states. It also describes the information needed to document each experiment and the model outputs required for analysis and benchmarking.