57 resultados para Verrius Flaccus, Marcus
em CentAUR: Central Archive University of Reading - UK
Resumo:
This article assembles and examines the evidence for the poetic outputs of Marcus and Quintus Cicero related to Caesar’s invasion of Britain. Following the establishment of a relative chronology of the evidence for their work, it is argued that Quintus Cicero most likely produced a fabula praetexta (not an epic poem, as commonly assumed). His brother, in turn, wrote an epic, based on Quintus’ eye-witness reports. Careful analysis of the ancient discourse about this piece reveals insights in Cicero’s poetic workshop and the creation of ‘archival truth’ through narrativising historical events in epic poetry. Finally, a case is made for greater attention to financial affairs between Caesar and the Ciceros that happen to coincide with the drafting process of their respective literary works.
Resumo:
Resumo:
NG2-glia are an abundant population of glial cells that have been considered by many to be oligodendrocyte progenitor cells (OPCs). However, growing evidence suggests that NG2-glia may also be capable of differentiating into astrocytes and neurons under certain conditions. Here, we have examined NG2-glia in cerebellar slices, using transgenic mice in which the astroglial marker glial specific protein (GFAP) drives expression of the reporter gene enhanced green fluorescent protein (EGFP). Immunolabelling for NG2 shows that NG2-glia and GFAP-EGFP astroglia are separate populations in most areas of the brain, although a substantial population of NG2-glia in the pons also express the GFAP-EGFP reporter. In the cerebellum, NG2-glia did not express EGFP, either at postnatal day (P)12 or P29-30. We developed an organotypic culture of P12 cerebellar slices that maintain cytoarchitectural integrity of Purkinje neurons and Bergmann glia. In these cultures, BrdU labelling indicates that the majority of NG2-glia enter the cell cycle within 2 days in vitro (DIV), suggesting that NG2-glia undergo a [`]reactive' response in cerebellar cultures. After 2 DIV NG2-glia began to express the astroglial reporter EGFP and in some cases the respective GFAP protein. However, NG2-glia did not acquire phenotypic markers of neural stem cells or neurons. The results suggest that NG2-glia are not lineage restricted OPCs and are a potential source of astrocytes in the cerebellum.
Resumo:
The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.
Resumo:
The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS
Resumo:
Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases (HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY6, aided by its specific phosphatase, the bifunctional kinase CheA3, acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB2 connects the cytoplasmic cluster kinase CheA3 with the polar localised kinase CheA2, and allows CheA3-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA3 to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different sources.
Resumo:
Alzheimer's disease is more frequent following an ischemic or hypoxic episode, with levels of beta-amyloid peptides elevated in brains from patients. Similar increases are found after experimental ischemia in animals. It is possible that increased beta-amyloid deposition arises from alterations in amyloid precursor protein (APP) metabolism, indeed, we have shown that exposing cells of neuronal origin to chronic hypoxia decreased the secretion of soluble APP (sAPPalpha) derived by action of alpha-secretase on APP, coinciding with a decrease in protein levels of ADAM10, a disintegrin metalloprotease which is thought to be the major alpha-secretase. In the current study, we extended those observations to determine whether the expression of ADAM10 and another putative alpha-secretase, TACE, as well as the beta-secretase, BACE1 were regulated by chronic hypoxia at the level of protein and mRNA. Using Western blotting and RT-PCR, we demonstrate that after 48 h chronic hypoxia, such that sAPPalpha secretion is decreased by over 50%, protein levels of ADAM10 and TACE and by approximately 60% and 40% respectively with no significant decrease in BACE1 levels. In contrast, no change in the expression of the mRNA for these proteins could be detected. Thus, we conclude that under CH the level of the putative alpha-secretases, ADAM10 and TACE are regulated by post-translational mechanisms, most probably proteolysis, rather than at the level of transcription.
Resumo:
The excitatory amino acid transporters (EAAT) removes neurotransmitters glutamate and aspartate from the synaptic cleft. Most CNS glutamate uptake is mediated by EAAT2 into glia, though nerve terminals show evidence for uptake, through an unknown transporter. Reverse-transcriptase PCR identified the expression of EAAT1, EAAT2, EAAT3 and EAAT4 mRNAs in primary cultures of mouse cortical or striatal neurones. We have used synaptosomes and glial plasmalemmal vesicles (GPV) from adult mouse and rat CNS to identify the nerve terminal transporter. Western blotting showed detectable levels of the transporters EAAT1 (GLAST) and EAAT2 (Glt-1) in both synaptosomes and GPVs. Uptake of [3H]D-aspartate or [3H]L-glutamate into these preparations revealed sodium-dependent uptake in GPV and synaptosomes which was inhibited by a range of EAAT blockers: dihydrokainate, serine-o-sulfate, l-trans-2,4-pyrrolidine dicarboxylate (PDC) (+/-)-threo-3-methylglutamate and (2S,4R )-4-methylglutamate. The IC50 values found for these compounds suggested functional expression of the 'glial, transporter, EAAT2 in nerve terminals. Additionally blockade of the majority EAAT2 uptake sites with 100 micro m dihydrokainate, failed to unmask any functional non-EAAT2 uptake sites. The data presented in this study indicate that EAAT2 is the predominant nerve terminal glutamate transporter in the adult rodent CNS.
Resumo:
Adult male hooded Lister rats were either fed a diet containing 150 microg/g soya phytoestrogens or a soya-free diet for 18 days. This concentration of phytoestrogens should have been sufficient to occupy the oestrogen-beta, but not the oestrogen-alpha, receptors. Using in situ hybridisation, significant reductions were found in brain-derived neurotrophic factor (BDNF) mRNA expression in the CA3 and CA4 region of the hippocampus and in the cerebral cortex in the rats fed the diet containing phytoestrogens, compared with those on the soya-free diet. No changes in glutamic acid decarboxylase-67 or glial fibrillary acidic protein mRNA were found. This suggests a role for oestrogen-beta receptors in regulating BDNF mRNA expression.
Resumo:
The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalizations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts.