3 resultados para Verification techniques
em CentAUR: Central Archive University of Reading - UK
Resumo:
Forecasting atmospheric blocking is one of the main problems facing medium-range weather forecasters in the extratropics. The European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) provides an excellent basis for medium-range forecasting as it provides a number of different possible realizations of the meteorological future. This ensemble of forecasts attempts to account for uncertainties in both the initial conditions and the model formulation. Since 18 July 2000, routine output from the EPS has included the field of potential temperature on the potential vorticity (PV) D 2 PV units (PVU) surface, the dynamical tropopause. This has enabled the objective identification of blocking using an index based on the reversal of the meridional potential-temperature gradient. A year of EPS probability forecasts of Euro-Atlantic and Pacific blocking have been produced and are assessed in this paper, concentrating on the Euro-Atlantic sector. Standard verification techniques such as Brier scores, Relative Operating Characteristic (ROC) curves and reliability diagrams are used. It is shown that Euro-Atlantic sector-blocking forecasts are skilful relative to climatology out to 10 days, and are more skilful than the deterministic control forecast at all lead times. The EPS is also more skilful than a probabilistic version of this deterministic forecast, though the difference is smaller. In addition, it is shown that the onset of a sector-blocking episode is less well predicted than its decay. As the lead time increases, the probability forecasts tend towards a model climatology with slightly less blocking than is seen in the real atmosphere. This small under-forecasting bias in the blocking forecasts is possibly related to a westerly bias in the ECMWF model. Copyright © 2003 Royal Meteorological Society
Resumo:
1. Suction sampling is a popular method for the collection of quantitative data on grassland invertebrate populations, although there have been no detailed studies into the effectiveness of the method. 2. We investigate the effect of effort (duration and number of suction samples) and sward height on the efficiency of suction sampling of grassland beetle, true bug, planthopper and spider Populations. We also compare Suction sampling with an absolute sampling method based on the destructive removal of turfs. 3. Sampling for durations of 16 seconds was sufficient to collect 90% of all individuals and species of grassland beetles, with less time required for the true bugs, spiders and planthoppers. The number of samples required to collect 90% of the species was more variable, although in general 55 sub-samples was sufficient for all groups, except the true bugs. Increasing sward height had a negative effect on the capture efficiency of suction sampling. 4. The assemblage structure of beetles, planthoppers and spiders was independent of the sampling method (suction or absolute) used. 5. Synthesis and applications. In contrast to other sampling methods used in grassland habitats (e.g. sweep netting or pitfall trapping), suction sampling is an effective quantitative tool for the measurement of invertebrate diversity and assemblage structure providing sward height is included as a covariate. The effective sampling of beetles, true bugs, planthoppers and spiders altogether requires a minimum sampling effort of 110 sub-samples of duration of 16 seconds. Such sampling intensities can be adjusted depending on the taxa sampled, and we provide information to minimize sampling problems associated with this versatile technique. Suction sampling should remain an important component in the toolbox of experimental techniques used during both experimental and management sampling regimes within agroecosystems, grasslands or other low-lying vegetation types.
Resumo:
It's a fact that functional verification (FV) is paramount within the hardware's design cycle. With so many new techniques available today to help with FV, which techniques should we really use? The answer is not straightforward and is often confusing and costly. The tools and techniques to be used in a project have to be decided upon early in the design cycle to get the best value for these new verification methods. This paper gives a quick survey in the form of an overview on FV, establishes the difference between verification and validation, describes the bottlenecks that appear in the verification process, examines the challenges in FV and exposes the current FV technologies and trends.