3 resultados para Venous Thromboembolism
em CentAUR: Central Archive University of Reading - UK
Resumo:
CONTEXT: The link between long-haul air travel and venous thromboembolism is the subject of continuing debate. It remains unclear whether the reduced cabin pressure and oxygen tension in the airplane cabin create an increased risk compared with seated immobility at ground level. OBJECTIVE: To determine whether hypobaric hypoxia, which may be encountered during air travel, activates hemostasis. DESIGN, SETTING, AND PARTICIPANTS: A single-blind, crossover study, performed in a hypobaric chamber, to assess the effect of an 8-hour seated exposure to hypobaric hypoxia on hemostasis in 73 healthy volunteers, which was conducted in the United Kingdom from September 2003 to November 2005. Participants were screened for factor V Leiden G1691A and prothrombin G20210A mutation and were excluded if they tested positive. Blood was drawn before and after exposure to assess activation of hemostasis. INTERVENTIONS: Individuals were exposed alternately (> or =1 week apart) to hypobaric hypoxia, similar to the conditions of reduced cabin pressure during commercial air travel (equivalent to atmospheric pressure at an altitude of 2438 m), and normobaric normoxia (control condition; equivalent to atmospheric conditions at ground level, circa 70 m above sea level). MAIN OUTCOME MEASURES: Comparative changes in markers of coagulation activation, fibrinolysis, platelet activation, and endothelial cell activation. RESULTS: Changes were observed in some hemostatic markers during the normobaric exposure, attributed to prolonged sitting and circadian variation. However, there were no significant differences between the changes in the hypobaric and the normobaric exposures. For example, the median difference in change between the hypobaric and normobaric exposure was 0 ng/mL for thrombin-antithrombin complex (95% CI, -0.30 to 0.30 ng/mL); -0.02 [corrected] nmol/L for prothrombin fragment 1 + 2 (95% CI, -0.03 to 0.01 nmol/L); 1.38 ng/mL for D-dimer (95% CI, -3.63 to 9.72 ng/mL); and -2.00% for endogenous thrombin potential (95% CI, -4.00% to 1.00%). CONCLUSION: Our findings do not support the hypothesis that hypobaric hypoxia, of the degree that might be encountered during long-haul air travel, is associated with prothrombotic alterations in the hemostatic system in healthy individuals at low risk of venous thromboembolism.
Resumo:
Following the 1995 “pill scare” relating to the risk of venous thrombosis from taking second- or third-generation oral contraceptives, the Committee on Safety of Medicines (CSM) withdrew their earlier recommended restrictions on the use of third-generation pills and published recommended wording to be used in patient information leaflets. However, the effectiveness of this wording has not been tested. An empirical study (with 186 pill users, past users, and non-users) was conducted to assess understanding, based on this wording, of the absolute and relative risk of thrombosis in pill users and in pregnancy. The results showed that less than 12% of women in the (higher education) group fully understood the absolute levels of risk from taking the pill and from being pregnant. Relative risk was also poorly understood, with less than 40% of participants showing full understanding, and 20% showing no understanding. We recommend that the CSM revisit the wording currently provided to millions of women in the UK.
Resumo:
Our understanding of vascular endothelial cell physiology is based on studies of endothelial cells cultured from various vascular beds of different species for varying periods of time. Systematic analysis of the properties of endothelial cells from different parts of the vasculature is lacking. Here, we compare Ca(2+) homeostasis in primary cultures of endothelial cells from human internal mammary artery and saphenous vein and how this is modified by hypoxia, an inevitable consequence of bypass grafting (2.5% O(2), 24 h). Basal [Ca(2+)]( i ) and store depletion-mediated Ca(2+) entry were significantly different between the two cell types, yet agonist (ATP)-mediated mobilization from endoplasmic reticulum stores was similar. Hypoxia potentiated agonist-evoked responses in arterial, but not venous, cells but augmented store depletion-mediated Ca(2+) entry only in venous cells. Clearly, Ca(2+) signaling and its remodeling by hypoxia are strikingly different in arterial vs. venous endothelial cells. Our data have important implications for the interpretation of data obtained from endothelial cells of varying sources.