55 resultados para Velvet bean
em CentAUR: Central Archive University of Reading - UK
Resumo:
The wild common bean (Phaseolus vulgaris) is widely but discontinuously distributed from northern Mexico to northern Argentina on both sides of the Isthmus of Panama. Little is known on how the species has reached its current disjunct distribution. In this research, chloroplast DNA polymorphisms in seven non-coding regions were used to study the history of migration of wild P. vulgaris between Mesoamerica and South America. A penalized likelihood analysis was applied to previously published Leguminosae ITS data to estimate divergence times between P. vulgaris and its sister taxa from Mesoamerica, and divergence times of populations within P. vulgaris. Fourteen chloroplast haplotypes were identified by PCR-RFLP and their geographical associations were studied by means of a Nested Clade Analysis and Mantel Tests. The results suggest that the haplotypes are not randomly distributed but occupy discrete parts of the geographic range of the species. The current distribution of haplotypes may be explained by isolation by distance and by at least two migration events between Mesoamerica and South America: one from Mesoamerica to South America and another one from northern South America to Mesoamerica. Age estimates place the divergence of P. vulgaris from its sister taxa from Mesoamerica at or before 1.3 Ma, and divergence of populations from Ecuador-northern Peru at or before 0.6 Ma. As these ages are taken as minimum divergence times, the influence of past events, such as the closure of the Isthmus of Panama and the final uplift of the Andes, on the migration history and population structure of this species cannot be disregarded.
Resumo:
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.
Resumo:
Field experiments were conducted in field bean in the north-eastern part of the Republic of Croatia to compare weed control and crop response under different management practices within the critical period of field bean production. The practices consisted in broadcast application of labelled rate of preemergence herbicide (PRE) and postemergence herbicide application: (POST) broadcast, band application over the rows, and band application combined with mechanical cultivation using of different herbicide doses recommended by the manufacturer (2x, 1x, 1/2x, 1/4x, 1/8x). In 1999, weed control with PRE application of pendimethalin was superior to POST bentazone application due to late emergence of weeds and lack of residual herbicide control. In 2000 bentazone combined with cycloxydim controlled weeds in field bean better than PRE herbicide application. Based on the results of this research, single PRE or POST application of herbicide did not control a broad spectrum of weeds and did not provide the commercially acceptable full season control. Reduced rates of herbicide are not advisable tinder high weed pressure.
Resumo:
Weed control strategies for field beans were studied in North-eastern Croatia. This study focused on how different weed management practices affect weed community composition. The recommended pre-emergence herbicide application was compared to different treatments of post-emergence herbicide (broadcasted or banded over crop rows) and mechanical weed control in order to explore the response of a weed community to different management practice. Weed density data were used to compare total community densities by weed management strategies and to calculate diversity indices (Shannon's H', Shannon's E and Margalef's D-MG). Data were analyzed using ANOVA and multivariate technique. Weed community structure was generally similar in the post-emergence herbicide treatments, which were dominated by a few species that had high relative abundance values, while most of the species were of lower abundance. Notable fluctuations in weed communities corresponded with variation in weather patterns and management practice.
Resumo:
The effects of temperature and light integral on fruit growth and development of five cacao genotypes (Amelonado, AMAZ 15/15, SCA 6, SPEC 54/1 and UF 676) were studied in semi-controlled environment glasshouses in which the thermal regimes of cacao-growing regions of Brazil, Ghana and Malaysia were simulated. Fruit losses because of physiological will (cherelle will) were greater at higher temperatures and also differed significantly between genotypes, reflecting genetic differences in competition for assimilates between vegetative and reproductive components. Short-term measurements of fruit growth indicated faster growth rates at higher temperatures. In addition, a significant negative linear relationship between temperature and development time was observed. There was an effect of genotype on this relationship, such that time to fruit maturation at a given temperature was greatest for the clone UF 676 and least for AMAZ 15/15. Analysis of base temperatures, derived from these relationships indicated genetic variability in sensitivity of cacao fruit growth to temperature (base temperatures ranged from 7.5 degrees C for Amelonado and AMAZ 15/15 to 12.9 for SPEC 54/1). Final fruit size was a positive function of beam number for all genotypes and a positive function of light integral for Amelonado in the Malaysia simulated environment (where the temperature was almost constant). In simulated environments where temperature was the main variable (Brazil and Ghana) increases in temperature resulted in a significant decrease in final pod size for one genotype (Amelonado) in Brazil and for two genotypes (SPEC 54/1 and UF 676) in Ghana. It was hypothesised that pod growth duration (mediated by temperature), assimilation and beam number are all determinants of final pod size but that under specific conditions one of these factors may override the others. There was variability between genotypes in the response of beam size and beam lipid content to temperature. Negative relationships between temperature and bean size were found for Amelonado and UF 676. Lipid concentration was a curvilinear function of temperature for Amelonado and UF 676, with optimal temperatures of 23 degrees C and 24 degrees C, respectively. The variability observed here of different cacao genotypes to temperature highlights the need and opportunities for appropriate matching of planting material with local environments.
Resumo:
Different molecular methods: BOX-PCR fingerprinting, R-FLP-PCR and sequencing of the 16S rDNA as well as the symbiotic genes nodC and nifH, were used to study the genetic diversity within a collection of nodulating bean rhizobia isolated from five soils of North-West Morocco. BOX fingerprints analysis of 241 isolates revealed 19 different BOX profiles. According to the PFLP-PCR and sequencing of 16S rDNA carried out on 45 representative isolates, 5 genotypes were obtained corresponding to the species Rhizobium etli, R. tropici, R. gallicum, R. leguminosarum and Sinorhizobium meliloti. The most abundant species were R. etli and R. tropici (61% and 24%, respectively). A high intraspecific diversity was observed among the R. etli isolates, while the R. tropici group was homogeneous. Most of the rhizobia studied belong to species known to nodulate common bean, while 2 species were unconventional microsymbionts: R. leguminosarum biovar viciae and S. meliloti. Our results, especially the nodulation promiscuity of common bean and the relation between the predominance of some species of rhizobia in particular soils and the salt content of these soils, indicate that there is a real need for a better understanding of the distribution of common bean rhizobia species in the soils of Morocco before any inoculation attempt.
Resumo:
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.
Resumo:
Sixteen early to mid lactation Finnish Ayrshire dairy cows were used in a cyclic change-over experiment with four 21-day experimental periods and a 4 5 2 factorial arrangement of treatments to evaluate the effects of heat-treated rapeseed expeller and solvent-extracted soya-bean meal protein supplements on animal performance. Dietary treatments consisted of grass silage offered ad libitum supplemented with a fixed amount of a cereal based concentrate (10 kg/day on a fresh weight basis) containing 120, 150, 180 or 210 g crude protein (CP) per kg dry matter (DM). Concentrate CP content was manipulated by replacement of basal ingredients (g/kg) with either rapeseed expeller (R; 120, 240 and 360) or soya-bean meal (S; 80, 160 and 240). Increases in concentrate CP stimulated linear increases (P < 0.05) in silage intake (mean 22.5 and 23.8 g DM per g/kg increase in dietary CP content, for R and S, respectively) and milk production. Concentrate inclusion of rapeseed expeller elicited higher (P < 0.01) milk yield and milk protein output responses (mean 108 and 3.71 g/day per g/kg DM increase in dietary CP content) than soya-bean meal (corresponding values 62 and 2.57). Improvements in the apparent utilization of dietary nitrogen for milk protein synthesis (mean 0.282 and 0.274, for R and S, respectively) were associated with higher (P < 0.05) plasma concentrations of histidine, branched-chain, essential and total amino acids (35, 482, 902 and 2240 and 26, 410, 800 and 2119 mu mol/l, respectively) and lower (P < 0.01) concentrations of urea (corresponding values 4.11 and 4.52 mmol/l). Heat-treated rapeseed expeller proved to be a more effective protein supplement than solvent-extracted soya-bean meal for cows offered grass silage-based diets.
Resumo:
The chemical composition and fractional distribution of protein isolates prepared from species of Mucuna bean were studied. Using six different extraction media, the yield of protein based on the Kjeldahl procedure varied from 8% to 34%, and the protein content varied from 75% to 95%. When the yields were high, the colour of the isolates generally tended to be dark and unsatisfactory. Hence, the use of chemical treatments and high pressure processing were explored. The solubility maxima for the protein isolates in water were found to occur at pH values of 2.0 and 11.0, while the pH corresponding to minimum solubility (i.e. isoelectric region) occurred at pH values of 4.0 and 5.0. The total essential amino acid in the isolates ranged from 495 to 557 mg g(-1) protein, which compares favourably with the recommended level for pre-school and school children. Methionine and cysteine were the limiting amino acids. A key nutritional attribute of the protein isolates was its high lysine content. The isolate can therefore complement cereal-based foods which are deficient in lysine. The proteins mainly consisted of albumins, glutelins and globulins. Prolamins were only present in trace concentration (< 0.3%). Gel filtration chromatograms of the isolates indicated the presence of major protein fractions with molecular weights of 40 and 15 kDa, while gel electrophoresis (SDS-PAGE) indicated a major broad zone with molecular weights of 36 +/- 7 and 17.3 +/- 13 kDa. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Pseudomonas syringae pv. phaseolicola is the seed borne causative agent of halo blight in the common bean Phaseolus vulgaris. Pseudomonas syringae pv. phaseolicola race 4 strain 1302A contains the avirulence gene hopAR1 (located on a 106-kb genomic island, PPHGI-1, and earlier named avrPphB), which matches resistance gene R3 in P. vulgaris cultivar Tendergreen (TG) and causes a rapid hypersensitive reaction (HR). Here, we have fluorescently labeled selected Pseudomonas syringae pv. phaseolicola 1302A and 1448A strains (with and without PPHGI-1) to enable confocal imaging of in-planta colony formation within the apoplast of resistant (TG) and susceptible (Canadian Wonder [CW]) P. vulgaris leaves. Temporal quantification of fluorescent Pseudomonas syringae pv. phaseolicola colony development correlated with in-planta bacterial multiplication (measured as CFU/ml) and is, therefore, an effective means of monitoring Pseudomonas syringae pv. phaseolicola endophytic colonization and survival in P. vulgaris. We present advances in the application of confocal microscopy for in-planta visualization of Pseudomonas syringae pv. phaseolicola colony development in the leaf mesophyll to show how the HR defense response greatly affects colony morphology and bacterial survival. Unexpectedly, the presence of PPHGI-1 was found to cause a reduction of colony development in susceptible P. vulgaris CW leaf tissue. We discuss the evolutionary consequences that the acquisition and retention of PPHGI-1 brings to Pseudomonas syringae pv. phaseolicola in planta.
Resumo:
Pseudomonas syringae pv. phaseolicola causes halo blight of the common bean, Phaseolus vulgaris, worldwide and remains difficult to control. Races of the pathogen cause either disease symptoms or a resistant hypersensitive response on a series of differentially reacting bean cultivars. The molecular genetics of the interaction between P. syringae pv. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions. In this review, we discuss several of the areas of study that chart the rise of P. syringae pv. phaseolicola from a common pathogen of bean plants to a molecular plant-pathogen supermodel bacterium. Taxonomy: Bacteria; Proteobacteria, gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas; species Pseudomonas syringae; Genomospecies 2; pathogenic variety phaseolicola. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, 1.5 µm long, 0.7-1.2 µm in diameter, at least one polar flagellum, optimal temperatures for growth of 25-30 °C, oxidase negative, arginine dihydrolase negative, levan positive and elicits the hypersensitive response on tobacco. Host range: Major bacterial disease of common bean (Phaseolus vulgaris) in temperate regions and above medium altitudes in the tropics. Natural infections have been recorded on several other legume species, including all members of the tribe Phaseoleae with the exception of Desmodium spp. and Pisum sativum. Disease symptoms: Water-soaked lesions on leaves, pods, stems or petioles, that quickly develop greenish-yellow haloes on leaves at temperatures of less than 23 °C. Infected seeds may be symptomless, or have wrinkled or buttery-yellow patches on the seed coat. Seedling infection is recognized by general chlorosis, stunting and distortion of growth. Epidemiology: Seed borne and disseminated from exudation by water-splash and wind occurring during rainfall. Bacteria invade through wounds and natural openings (notably stomata). Weedy and cultivated alternative hosts may also harbour the bacterium. Disease control: Some measure of control is achieved with copper formulations and streptomycin. Pathogen-free seed and resistant cultivars are recommended. Useful websites: Pseudomonas-plant interaction http://www.pseudomonas-syringae.org/; PseudoDB http://xbase.bham.ac.uk/pseudodb/; Plant Associated and Environmental Microbes Database (PAMDB) http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; PseudoMLSA Database http://www.uib.es/microbiologiaBD/Welcome.html.
Resumo:
The aim of this study was to convert existing faba bean (Vicia faba L.) single nucleotide polymorphism (SNP) markers from cleaved amplification polymorphic sequences and SNaPshot® formats, which are expensive and time-consuming, to the more convenient KBiosciences competitive allele‐specific PCR (KASP) assay format. Out of 80 assays designed, 75 were validated, though a core set of 67 of the most robust markers is recommended for further use. The 67 best KASP SNP assays were used across two generations of single seed descent to detect unintended outcrossing and to track and quantify loss of heterozygosity, a capability that will significantly increase the efficiency and performance of pure line production and maintenance. This same set of assays was also used to examine genetic relationships between the 67 members of the partly inbred panel, and should prove useful for line identification and diversity studies in the future.