18 resultados para Variogram
em CentAUR: Central Archive University of Reading - UK
Resumo:
The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.
Resumo:
Matheron's usual variogram estimator can result in unreliable variograms when data are strongly asymmetric or skewed. Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. This paper examines the effects of underlying asymmetry on the variogram and on the accuracy of prediction, and the second one examines the effects arising from outliers. Standard geostatistical texts suggest ways of dealing with underlying asymmetry; however, this is based on informed intuition rather than detailed investigation. To determine whether the methods generally used to deal with underlying asymmetry are appropriate, the effects of different coefficients of skewness on the shape of the experimental variogram and on the model parameters were investigated. Simulated annealing was used to create normally distributed random fields of different size from variograms with different nugget:sill ratios. These data were then modified to give different degrees of asymmetry and the experimental variogram was computed in each case. The effects of standard data transformations on the form of the variogram were also investigated. Cross-validation was used to assess quantitatively the performance of the different variogram models for kriging. The results showed that the shape of the variogram was affected by the degree of asymmetry, and that the effect increased as the size of data set decreased. Transformations of the data were more effective in reducing the skewness coefficient in the larger sets of data. Cross-validation confirmed that variogram models from transformed data were more suitable for kriging than were those from the raw asymmetric data. The results of this study have implications for the 'standard best practice' in dealing with asymmetry in data for geostatistical analyses. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Asymmetry in a distribution can arise from a long tail of values in the underlying process or from outliers that belong to another population that contaminate the primary process. The first paper of this series examined the effects of the former on the variogram and this paper examines the effects of asymmetry arising from outliers. Simulated annealing was used to create normally distributed random fields of different size that are realizations of known processes described by variograms with different nugget:sill ratios. These primary data sets were then contaminated with randomly located and spatially aggregated outliers from a secondary process to produce different degrees of asymmetry. Experimental variograms were computed from these data by Matheron's estimator and by three robust estimators. The effects of standard data transformations on the coefficient of skewness and on the variogram were also investigated. Cross-validation was used to assess the performance of models fitted to experimental variograms computed from a range of data contaminated by outliers for kriging. The results showed that where skewness was caused by outliers the variograms retained their general shape, but showed an increase in the nugget and sill variances and nugget:sill ratios. This effect was only slightly more for the smallest data set than for the two larger data sets and there was little difference between the results for the latter. Overall, the effect of size of data set was small for all analyses. The nugget:sill ratio showed a consistent decrease after transformation to both square roots and logarithms; the decrease was generally larger for the latter, however. Aggregated outliers had different effects on the variogram shape from those that were randomly located, and this also depended on whether they were aggregated near to the edge or the centre of the field. The results of cross-validation showed that the robust estimators and the removal of outliers were the most effective ways of dealing with outliers for variogram estimation and kriging. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The resolution of remotely sensed data is becoming increasingly fine, and there are now many sources of data with a pixel size of 1 m x 1 m. This produces huge amounts of data that have to be stored, processed and transmitted. For environmental applications this resolution possibly provides far more data than are needed: data overload. This poses the question: how much is too much? We have explored two resolutions of data-20 in pixel SPOT data and I in pixel Computerized Airborne Multispectral Imaging System (CAMIS) data from Fort A. P. Hill (Virginia, USA), using the variogram of geostatistics. For both we used the normalized difference vegetation index (NDVI). Three scales of spatial variation were identified in both the SPOT and 1 in data: there was some overlap at the intermediate spatial scales of about 150 in and of 500 m-600 in. We subsampled the I in data and scales of variation of about 30 in and of 300 in were identified consistently until the separation between pixel centroids was 15 in (or 1 in 225pixels). At this stage, spatial scales of about 100m and 600m were described, which suggested that only now was there a real difference in the amount of spatial information available from an environmental perspective. These latter were similar spatial scales to those identified from the SPOT image. We have also analysed I in CAMIS data from Fort Story (Virginia, USA) for comparison and the outcome is similar.:From these analyses it seems that a pixel size of 20m is adequate for many environmental applications, and that if more detail is required the higher resolution data could be sub-sampled to a 10m separation between pixel centroids without any serious loss of information. This reduces significantly the amount of data that needs to be stored, transmitted and analysed and has important implications for data compression.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The precision farmer wants to manage the variation in soil nutrient status continuously, which requires reliable predictions at places between sampling sites. Ordinary kriging can be used for prediction if the data are spatially dependent and there is a suitable variogram model. However, even if data are spatially correlated, there are often few soil sampling sites in relation to the area to be managed. If intensive ancillary data are available and these are coregionalized with the sparse soil data, they could be used to increase the accuracy of predictions of the soil properties by methods such as cokriging, kriging with external drift and regression kriging. This paper compares the accuracy of predictions of the plant available N properties (mineral N and potentially available N) for two arable fields in Bedfordshire, United Kingdom, from ordinary kriging, cokriging, kriging with external drift and regression kriging. For the last three, intensive elevation data were used with the soil data. The mean squared errors of prediction from these methods of kriging were determined at validation sites where the values were known. Kriging with external drift resulted in the smallest mean squared error for two of the three properties examined, and cokriging for the other. The results suggest that the use of intensive ancillary data can increase the accuracy of predictions of soil properties in arable fields provided that the variables are related spatially. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Relations between the apparent electrical conductivity of the soil (ECa) and top- and sub-soil physical properties were examined for two arable fields in southern England (Crowmarsh Battle Farms and the Yattendon Estate). The spatial variation of ECa and the soil properties was explored geostatistically. The variogram ranges showed that ECa varied on a similar spatial scale to many of the soil physical properties in both fields. Several features in the map of kriged predictions of ECa were also evident in maps of the soil properties. In addition, the correlation coefficients showed a strong relation between ECa and several soil properties. A moving correlation analysis enabled differences in the relations between ECa and the soil properties to be examined within the fields. The results indicated that relations were inconsistent; they were stronger in some areas than others. A regression of ECa on the principal component scores of the leading components for both fields showed that the first two components accounted for a large proportion of the variance in ECa, whereas the others accounted for little or none. For Crowmarsh topsoil sand and clay, loss on ignition and volumetric water measured in the autumn had large correlations on the first component, and for Yattendon they were large for topsoil sand and clay, and autumn and spring volumetric water. The cross-variograms suggested strong coregionalization between ECa and several soil physical properties; in particular subsoil sand and silt at Crowmarsh, and subsoil sand and clay at Yattendon. The structural correlations from the linear model of coregionalization confirmed the strength of the relations between ECa and the subsoil properties. Nevertheless, no one property was consistently important for both fields. Although a map of ECa can indicate the general patterns of spatial variation in the soil, it is not a substitute for information on soil properties obtained by sampling and analysing the soil. Nevertheless, it could be used to guide further sampling. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Site-specific management requires accurate knowledge of the spatial variation in a range of soil properties within fields. This involves considerable sampling effort, which is costly. Ancillary data, such as crop yield, elevation and apparent electrical conductivity (ECa) of the soil, can provide insight into the spatial variation of some soil properties. A multivariate classification with spatial constraint imposed by the variogram was used to classify data from two arable crop fields. The yield data comprised 5 years of crop yield, and the ancillary data 3 years of yield data, elevation and ECa. Information on soil chemical and physical properties was provided by intensive surveys of the soil. Multivariate variograms computed from these data were used to constrain sites spatially within classes to increase their contiguity. The constrained classifications resulted in coherent classes, and those based on the ancillary data were similar to those from the soil properties. The ancillary data seemed to identify areas in the field where the soil is reasonably homogeneous. The results of targeted sampling showed that these classes could be used as a basis for management and to guide future sampling of the soil.
Resumo:
To provide reliable estimates for mapping soil properties for precision agriculture requires intensive sampling and costly laboratory analyses. If the spatial structure of ancillary data, such as yield, digital information from aerial photographs, and soil electrical conductivity (EC) measurements, relates to that of soil properties they could be used to guide the sampling intensity for soil surveys. Variograins of permanent soil properties at two study sites on different parent materials were compared with each other and with those for ancillary data. The ranges of spatial dependence identified by the variograms of both sets of properties are of similar orders of magnitude for each study site, Maps of the ancillary data appear to show similar patterns of variation and these seem to relate to those of the permanent properties of the soil. Correlation analysis has confirmed these relations. Maps of kriged estimates from sub-sampled data and the original variograrns showed that the main patterns of variation were preserved when a sampling interval of less than half the average variogram range of ancillary data was used. Digital data from aerial photographs for different years and EC appear to show a more consistent relation with the soil properties than does yield. Aerial photographs, in particular those of bare soil, seem to be the most useful ancillary data and they are often cheaper to obtain than yield and EC data.
Resumo:
Data such as digitized aerial photographs, electrical conductivity and yield are intensive and relatively inexpensive to obtain compared with collecting soil data by sampling. If such ancillary data are co-regionalized with the soil data they should be suitable for co-kriging. The latter requires that information for both variables is co-located at several locations; this is rarely so for soil and ancillary data. To solve this problem, we have derived values for the ancillary variable at the soil sampling locations by averaging the values within a radius of 15 m, taking the nearest-neighbour value, kriging over 5 m blocks, and punctual kriging. The cross-variograms from these data with clay content and also the pseudo cross-variogram were used to co-krige to validation points and the root mean squared errors (RMSEs) were calculated. In general, the data averaged within 15m and the punctually kriged values resulted in more accurate predictions.
Resumo:
It has been generally accepted that the method of moments (MoM) variogram, which has been widely applied in soil science, requires about 100 sites at an appropriate interval apart to describe the variation adequately. This sample size is often larger than can be afforded for soil surveys of agricultural fields or contaminated sites. Furthermore, it might be a much larger sample size than is needed where the scale of variation is large. A possible alternative in such situations is the residual maximum likelihood (REML) variogram because fewer data appear to be required. The REML method is parametric and is considered reliable where there is trend in the data because it is based on generalized increments that filter trend out and only the covariance parameters are estimated. Previous research has suggested that fewer data are needed to compute a reliable variogram using a maximum likelihood approach such as REML, however, the results can vary according to the nature of the spatial variation. There remain issues to examine: how many fewer data can be used, how should the sampling sites be distributed over the site of interest, and how do different degrees of spatial variation affect the data requirements? The soil of four field sites of different size, physiography, parent material and soil type was sampled intensively, and MoM and REML variograms were calculated for clay content. The data were then sub-sampled to give different sample sizes and distributions of sites and the variograms were computed again. The model parameters for the sets of variograms for each site were used for cross-validation. Predictions based on REML variograms were generally more accurate than those from MoM variograms with fewer than 100 sampling sites. A sample size of around 50 sites at an appropriate distance apart, possibly determined from variograms of ancillary data, appears adequate to compute REML variograms for kriging soil properties for precision agriculture and contaminated sites. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Maps of kriged soil properties for precision agriculture are often based on a variogram estimated from too few data because the costs of sampling and analysis are often prohibitive. If the variogram has been computed by the usual method of moments, it is likely to be unstable when there are fewer than 100 data. The scale of variation in soil properties should be investigated prior to sampling by computing a variogram from ancillary data, such as an aerial photograph of the bare soil. If the sampling interval suggested by this is large in relation to the size of the field there will be too few data to estimate a reliable variogram for kriging. Standardized variograms from aerial photographs can be used with standardized soil data that are sparse, provided the data are spatially structured and the nugget:sill ratio is similar to that of a reliable variogram of the property. The problem remains of how to set this ratio in the absence of an accurate variogram. Several methods of estimating the nugget:sill ratio for selected soil properties are proposed and evaluated. Standardized variograms with nugget:sill ratios set by these methods are more similar to those computed from intensive soil data than are variograms computed from sparse soil data. The results of cross-validation and mapping show that the standardized variograms provide more accurate estimates, and preserve the main patterns of variation better than those computed from sparse data.
Resumo:
Structure is an important physical feature of the soil that is associated with water movement, the soil atmosphere, microorganism activity and nutrient uptake. A soil without any obvious organisation of its components is known as apedal and this state can have marked effects on several soil processes. Accurate maps of topsoil and subsoil structure are desirable for a wide range of models that aim to predict erosion, solute transport, or flow of water through the soil. Also such maps would be useful to precision farmers when deciding how to apply nutrients and pesticides in a site-specific way, and to target subsoiling and soil structure stabilization procedures. Typically, soil structure is inferred from bulk density or penetrometer resistance measurements and more recently from soil resistivity and conductivity surveys. To measure the former is both time-consuming and costly, whereas observations made by the latter methods can be made automatically and swiftly using a vehicle-mounted penetrometer or resistivity and conductivity sensors. The results of each of these methods, however, are affected by other soil properties, in particular moisture content at the time of sampling, texture, and the presence of stones. Traditional methods of observing soil structure identify the type of ped and its degree of development. Methods of ranking such observations from good to poor for different soil textures have been developed. Indicator variograms can be computed for each category or rank of structure and these can be summed to give the sum of indicator variograms (SIV). Observations of the topsoil and subsoil structure were made at four field sites where the soil had developed on different parent materials. The observations were ranked by four methods and indicator and the sum of indicator variograms were computed and modelled for each method of ranking. The individual indicators were then kriged with the parameters of the appropriate indicator variogram model to map the probability of encountering soil with the structure represented by that indicator. The model parameters of the SIVs for each ranking system were used with the data to krige the soil structure classes, and the results are compared with those for the individual indicators. The relations between maps of soil structure and selected wavebands from aerial photographs are examined as basis for planning surveys of soil structure. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.
Resumo:
An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field.