2 resultados para Variable Charge

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effects of maize and soya bean residues on the pH and charge of a loamy sand (Kawalazi) and a sandy clay loam (Naming'omba) from Malawi were measured to determine both the indirect effect of the residues on soil charge through the changes in pH, and the direct contribution of charge carried on the residue surfaces. The soils had pH values (10 mM CaCl2) of 4.3 and 5.0 and organic matter contents were 1.4% and 2.7%, respectively. The clay fractions were dominated by kaolinite and goethite, and mica was present in both samples. The soils were incubated for 28 days with maize (Zea mays) and soya bean (Glycine max) residues. The maximum addition of residue (12.0%) in the Kawalazi and Naming'omba soils increased the pH from 4.3 and 5.0 to 4.8 and 5.3 (maize) and to 9.0 and 8.8 (soya bean), respectively. Negative charge increased from 2.1 and 4.7 cmol(c) kg(-1) to 3.8 and 7.5 (maize) and to 5.3 and 9.3 cmol(c) kg(-1) (soya bean). Positive charge increased from 0.72 and 0.62 to 0.87 and 0.85 cmol(c) kg(-1) (maize) and to 0.75 and 0.68 (soya bean). The charge contribution by the residues was calculated by difference between the charge on a sample incubated with residue and the charge on a soil without residue limed to the same pH value. Up to 100 cmolc negative charge and 10 cmol(c) of positive charge per kg of residue were directly contributed to the soil-residue mixture, the amounts depending on the type of residue, the extent to which the residue was decomposed in the soil and the pH of the mixture. The Anderson and Sposito method [Soil Sci. Soc. Am. J. 55 (1991) 1569] was used to partition the permanent negative charge (holding Cs+) from variable negative charge (holding Li+). In the pH range 3.7-6.5 the maize residue contributed between 3 and 26 cmol(c) of variable charge per kg of residue in the Kawalazi soil and between 6 and 25 cmol(c) per kg of residue in the Naming'omba soil. For soya bean the values were between I and 28 and between 4 and 68 cmolc per kg of residue, respectively. At a given pH value, the charge tended to increase with time of incubation and for a given addition of residue, pH decreased during incubation. Addition of residues contributed no permanent negative charge and the charge on the soil measured by Cs adsorption was independent of pH change caused by the residue showing that the method is valid for soil-residue mixtures. With time there was a decrease in the amount of permanent charge probably due to masking as humic material become adsorbed on mineral surfaces. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hexadecanuclear copper mixed-valence complex 2 containing 10 Cu-II, centers and 6 Cu-I centers was isolated with N,O donor ligands. From the X-ray crystal structure, 2 was found to contain a centrosymmetric dimeric cation - each monomeric unit composed of eight copper centers. It displays a very broad and weak intervalence charge-transfer band around 1100 nm at room temperature in the solid state. Variable-temperature magnetic susceptibility measurements indicate an S = 1/2 ground state for half of 2, explicitly, each Cu-8 moiety has a g value around 2.26. Complex 2 was examined by NMR spectroscopy at room temperature in solution and by EPR at low temperature; the data indicates that the valence is delocalized in 2 at room temperature but localized at low temperature. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)