89 resultados para Variability Models

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The internal variability and coupling between the stratosphere and troposphere in CCMVal‐2 chemistry‐climate models are evaluated through analysis of the annular mode patterns of variability. Computation of the annular modes in long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The spatial and temporal structure of the models’ annular modes is then compared with that of reanalyses. As a whole, the models capture the key features of observed intraseasonal variability, including the sharp vertical gradients in structure between stratosphere and troposphere, the asymmetries in the seasonal cycle between the Northern and Southern hemispheres, and the coupling between the polar stratospheric vortices and tropospheric midlatitude jets. It is also found that the annular mode variability changes little in time throughout simulations of the 21st century. There are, however, both common biases and significant differences in performance in the models. In the troposphere, the annular mode in models is generally too persistent, particularly in the Southern Hemisphere summer, a bias similar to that found in CMIP3 coupled climate models. In the stratosphere, the periods of peak variance and coupling with the troposphere are delayed by about a month in both hemispheres. The relationship between increased variability of the stratosphere and increased persistence in the troposphere suggests that some tropospheric biases may be related to stratospheric biases and that a well‐simulated stratosphere can improve simulation of tropospheric intraseasonal variability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ensembles of extended Atmospheric Model Intercomparison Project (AMIP) runs from the general circulation models of the National Centers for Environmental Prediction (formerly the National Meteorological Center) and the Max-Planck Institute (Hamburg, Germany) are used to estimate the potential predictability (PP) of an index of the Pacific–North America (PNA) mode of climate change. The PP of this pattern in “perfect” prediction experiments is 20%–25% of the index’s variance. The models, particularly that from MPI, capture virtually all of this variance in their hindcasts of the winter PNA for the period 1970–93. The high levels of internally generated model noise in the PNA simulations reconfirm the need for an ensemble averaging approach to climate prediction. This means that the forecasts ought to be expressed in a probabilistic manner. It is shown that the models’ skills are higher by about 50% during strong SST events in the tropical Pacific, so the probabilistic forecasts need to be conditional on the tropical SST. Taken together with earlier studies, the present results suggest that the original set of AMIP integrations (single 10-yr runs) is not adequate to reliably test the participating models’ simulations of interannual climate variability in the midlatitudes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We describe the main differences in simulations of stratospheric climate and variability by models within the fifth Coupled Model Intercomparison Project (CMIP5) that have a model top above the stratopause and relatively fine stratospheric vertical resolution (high-top), and those that have a model top below the stratopause (low-top). Although the simulation of mean stratospheric climate by the two model ensembles is similar, the low-top model ensemble has very weak stratospheric variability on daily and interannual time scales. The frequency of major sudden stratospheric warming events is strongly underestimated by the low-top models with less than half the frequency of events observed in the reanalysis data and high-top models. The lack of stratospheric variability in the low-top models affects their stratosphere-troposphere coupling, resulting in short-lived anomalies in the Northern Annular Mode, which do not produce long-lasting tropospheric impacts, as seen in observations. The lack of stratospheric variability, however, does not appear to have any impact on the ability of the low-top models to reproduce past stratospheric temperature trends. We find little improvement in the simulation of decadal variability for the high-top models compared to the low-top, which is likely related to the fact that neither ensemble produces a realistic dynamical response to volcanic eruptions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A dynamical wind-wave climate simulation covering the North Atlantic Ocean and spanning the whole 21st century under the A1B scenario has been compared with a set of statistical projections using atmospheric variables or large scale climate indices as predictors. As a first step, the performance of all statistical models has been evaluated for the present-day climate; namely they have been compared with a dynamical wind-wave hindcast in terms of winter Significant Wave Height (SWH) trends and variance as well as with altimetry data. For the projections, it has been found that statistical models that use wind speed as independent variable predictor are able to capture a larger fraction of the winter SWH inter-annual variability (68% on average) and of the long term changes projected by the dynamical simulation. Conversely, regression models using climate indices, sea level pressure and/or pressure gradient as predictors, account for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the dynamically projected long term trends over the North Atlantic. Investigating the wind-sea and swell components separately, we have found that the combination of two regression models, one for wind-sea waves and another one for the swell component, can improve significantly the wave field projections obtained from single regression models over the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combination of satellite data, reanalysis products and climate models are combined to monitor changes in water vapour, clear-sky radiative cooling of the atmosphere and precipitation over the period 1979-2006. Climate models are able to simulate observed increases in column integrated water vapour (CWV) with surface temperature (Ts) over the ocean. Changes in the observing system lead to spurious variability in water vapour and clear-sky longwave radiation in reanalysis products. Nevertheless all products considered exhibit a robust increase in clear-sky longwave radiative cooling from the atmosphere to the surface; clear-sky longwave radiative cooling of the atmosphere is found to increase with Ts at the rate of ~4 Wm-2 K-1 over tropical ocean regions of mean descending vertical motion. Precipitation (P) is tightly coupled to atmospheric radiative cooling rates and this implies an increase in P with warming at a slower rate than the observed increases in CWV. Since convective precipitation depends on moisture convergence, the above implies enhanced precipitation over convective regions and reduced precipitation over convectively suppressed regimes. To quantify this response, observed and simulated changes in precipitation rate are analysed separately over regions of mean ascending and descending vertical motion over the tropics. The observed response is found to be substantially larger than the model simulations and climate change projections. It is currently not clear whether this is due to deficiencies in model parametrizations or errors in satellite retrievals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We suggest that climate variability in Europe for the “pre-industrial” period 1500–1900 is fundamentally a consequence of internal fluctuations of the climate system. This is because a model simulation, using fixed pre-industrial forcing, in several important aspects is consistent with recent observational reconstructions at high temporal resolution. This includes extreme warm and cold seasonal events as well as different measures of the decadal to multi-decadal variance. Significant trends of 50-year duration can be seen in the model simulation. While the global temperature is highly correlated with ENSO (El Nino- Southern Oscillation), European seasonal temperature is only weakly correlated with the global temperature broadly consistent with data from ERA-40 reanalyses. Seasonal temperature anomalies of the European land area are largely controlled by the position of the North Atlantic storm tracks. We believe the result is highly relevant for the interpretation of past observational records suggesting that the effect of external forcing appears to be of secondary importance. That variations in the solar irradiation could have been a credible cause of climate variations during the last centuries, as suggested in some previous studies, is presumably due to the fact that the models used in these studies may have underestimated the internal variability of the climate. The general interpretation from this study is that the past climate is just one of many possible realizations and thus in many respects not reproducible in its time evolution with a general circulation model but only reproducible in a statistical sense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under anthropogenic climate change it is possible that the increased radiative forcing and associated changes in mean climate may affect the “dynamical equilibrium” of the climate system; leading to a change in the relative dominance of different modes of natural variability, the characteristics of their patterns or their behavior in the time domain. Here we use multi-century integrations of version three of the Hadley Centre atmosphere model coupled to a mixed layer ocean to examine potential changes in atmosphere-surface ocean modes of variability. After first evaluating the simulated modes of Northern Hemisphere winter surface temperature and geopotential height against observations, we examine their behavior under an idealized equilibrium doubling of atmospheric CO2. We find no significant changes in the order of dominance, the spatial patterns or the associated time series of the modes. Having established that the dynamic equilibrium is preserved in the model on doubling of CO2, we go on to examine the temperature pattern of mean climate change in terms of the modes of variability; the motivation being that the pattern of change might be explicable in terms of changes in the amount of time the system resides in a particular mode. In addition, if the two are closely related, we might be able to assess the relative credibility of different spatial patterns of climate change from different models (or model versions) by assessing their representation of variability. Significant shifts do appear to occur in the mean position of residence when examining a truncated set of the leading order modes. However, on examining the complete spectrum of modes, it is found that the mean climate change pattern is close to orthogonal to all of the modes and the large shifts are a manifestation of this orthogonality. The results suggest that care should be exercised in using a truncated set of variability EOFs to evaluate climate change signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate seasonal forecasts rely on the presence of low frequency, predictable signals in the climate system which have a sufficiently well understood and significant impact on the atmospheric circulation. In the Northern European region, signals associated with seasonal scale variability such as ENSO, North Atlantic SST anomalies and the North Atlantic Oscillation have not yet proven sufficient to enable satisfactorily skilful dynamical seasonal forecasts. The winter-time circulations of the stratosphere and troposphere are highly coupled. It is therefore possible that additional seasonal forecasting skill may be gained by including a realistic stratosphere in models. In this study we assess the ability of five seasonal forecasting models to simulate the Northern Hemisphere extra-tropical winter-time stratospheric circulation. Our results show that all of the models have a polar night jet which is too weak and displaced southward compared to re-analysis data. It is shown that the models underestimate the number, magnitude and duration of periods of anomalous stratospheric circulation. Despite the poor representation of the general circulation of the stratosphere, the results indicate that there may be a detectable tropospheric response following anomalous circulation events in the stratosphere. However, the models fail to exhibit any predictability in their forecasts. These results highlight some of the deficiencies of current seasonal forecasting models with a poorly resolved stratosphere. The combination of these results with other recent studies which show a tropospheric response to stratospheric variability, demonstrates a real prospect for improving the skill of seasonal forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to demonstrate the importance of changing temperature variability with climate change in assessments of future heat-related mortality. Previous studies have only considered changes in the mean temperature. Here we present estimates of heat-related mortality resulting from climate change for six cities: Boston, Budapest, Dallas, Lisbon, London and Sydney. They are based on climate change scenarios for the 2080s (2070-2099) and the temperature-mortality (t-m) models constructed and validated in Gosling et al. (2007). We propose a novel methodology for assessing the impacts of climate change on heat-related mortality that considers both changes in the mean and variability of the temperature distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interannual variability of the hydrological cycle is diagnosed from the Hadley Centre and Geophysical Fluid Dynamics Laboratory (GFDL) climate models, both of which are forced by observed sea surface temperatures. The models produce a similar sensitivity of clear-sky outgoing longwave radiation to surface temperature of ∼2 W m−2 K−1, indicating a consistent and positive clear-sky radiative feedback. However, differences between changes in the temperature lapse-rate and the height dependence of moisture fluctuations suggest that contrasting mechanisms bring about this result. The GFDL model appears to give a weaker water vapor feedback (i.e., changes in specific humidity). This is counteracted by a smaller upper tropospheric temperature response to surface warming, which implies a compensating positive lapse-rate feedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare European Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans with satellite observations and the U.S. National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research 40-year reanalysis. When systematic differences in moisture between the observational and reanalysis data sets are removed, the NCEP data show excellent agreement with the observations while the ERA-15 variability exhibits remarkable differences. By forcing agreement between ERA-15 column water vapor and the observations, where available, by scaling the entire moisture column accordingly, the height-dependent moisture variability remains unchanged for all but the 550–850 hPa layer, where the moisture variability reduces significantly. Thus the excess variation of column moisture in ERA-15 appears to originate in this layer. The moisture variability provided by ERA-15 is not deemed of sufficient quality for use in the validation of climate models.