63 resultados para Vapor sample
em CentAUR: Central Archive University of Reading - UK
Resumo:
Despite the potentially important role that water dimers may play in the Earth’s energy balance, there is still a lack of firm evidence for absorption of radiation by dimers in near-atmospheric conditions. We present results of the first high-resolution laboratory measurements of the water vapor continuum absorption within the 3100–4400 cm1 spectral region at a range of near-room temperatures. The analysis indicates a large contribution of dimer absorption to the water vapor continuum, significantly in excess of that predicted by other modern representations of the continuum. The temperature dependence agrees well with that expected for dimers.
Resumo:
Observations suggest that the mixing ratio of water vapour in the stratosphere has increased by 20–50% between the 1960s and mid-1990s. Here we show that inclusion of such a stratospheric water vapour (SWV) increase in a state-of-the-art climate model modifies the circulation of the extratropical troposphere: the modeled increase in the North Atlantic Oscillation (NAO) index is 40% of the observed increase in NAO index between 1965 and 1995, suggesting that if the SWV trend is real, it explains a significant fraction of the observed NAO trend. Our results imply that SWV changes provide a novel mechanism for communicating the effects of large tropical volcanic eruptions and ENSO events to the extratropical troposphere over timescales of a few years, which provides a mechanism for interannual climate predictability. Finally, we discuss our results in the context of regional climate change associated with changes in methane emissions.
Resumo:
The distribution and variability of water vapor and its links with radiative cooling and latent heating via precipitation are crucial to understanding feedbacks and processes operating within the climate system. Column-integrated water vapor (CWV) and additional variables from the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) are utilized to quantify the spatial and temporal variability in tropical water vapor over the period 1979–2001. The moisture variability is partitioned between dynamical and thermodynamic influences and compared with variations in precipitation provided by the Climate Prediction Center Merged Analysis of Precipitation (CMAP) and the Global Precipitation Climatology Project (GPCP). The spatial distribution of CWV is strongly determined by thermodynamic constraints. Spatial variability in CWV is dominated by changes in the large-scale dynamics, in particular associated with the El Niño–Southern Oscillation (ENSO). Trends in CWV are also dominated by dynamics rather than thermodynamics over the period considered. However, increases in CWV associated with changes in temperature are significant over the equatorial east Pacific when analyzing interannual variability and over the north and northwest Pacific when analyzing trends. Significant positive trends in CWV tend to predominate over the oceans while negative trends in CWV are found over equatorial Africa and Brazil. Links between changes in CWV and vertical motion fields are identified over these regions and also the equatorial Atlantic. However, trends in precipitation are generally incoherent and show little association with the CWV trends. This may in part reflect the inadequacies of the precipitation data sets and reanalysis products when analyzing decadal variability. Though the dynamic component of CWV is a major factor in determining precipitation variability in the tropics, in some regions/seasons the thermodynamic component cancels its effect on precipitation variability.
Resumo:
A fast radiative transfer model (RTM) to compute emitted infrared radiances for a very high resolution radiometer (VHRR), onboard the operational Indian geostationary satellite Kalpana has been developed and verified. This work is a step towards the assimilation of Kalpana water vapor (WV) radiances into numerical weather prediction models. The fast RTM uses a regression‐based approach to parameterize channel‐specific convolved level to space transmittances. A comparison between the fast RTM and the line‐by‐line RTM demonstrated that the fast RTM can simulate line‐by‐line radiances for the Kalpana WV channel to an accuracy better than the instrument noise, while offering more rapid radiance calculations. A comparison of clear sky radiances of the Kalpana WV channel with the ECMWF model first guess radiances is also presented, aiming to demonstrate the fast RTM performance with the real observations. In order to assimilate the radiances from Kalpana, a simple scheme for bias correction has been suggested.
Resumo:
Data for water vapor adsorption and evaporation are presented for a bare soil (sandy loam, clay content 15%) in a southern Spanish olive grove. Water losses and gains were measured using eight high-precision minilysimeters, placed around an olive tree, which had been irrigated until the soil reached field capacity (similar to 0.22 m(3) m(-3)). They were subsequently left to dry for 10 days. A pair of lysimeters was situated at each of the main points of the compass (N, E, S, W), at a distance of 1 m (the inner set of lysimeters; ILS) and 2 m (the outer set of lysimeters; OLS), respectively, from the tree trunk. Distinct periods of moisture loss (evaporation) and moisture gain (vapor adsorption) could be distinguished for each day. Vapor adsorption often started just after noon and generally lasted until the (early) evening. Values of up to 0.7 mm of adsorbed water per day were measured. Adsorption was generally largest for the OLS (up to 100% more on a daily basis), and increased during the dry down. This was mainly the result of lower OLS surface soil moisture contents (period-average absolute difference similar to 0.005 m(3) m(-3)), as illustrated using various analyses employing a set of micrometeorological equations describing the exchange of water vapor between bare soil and the atmosphere. These analyses also showed that the amount of water vapor adsorbed by soils is very sensitive to changes in atmospheric forcing and surface variables. The use of empirical equations to estimate vapor adsorption is therefore not recommended.
Resumo:
[ 1] The European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-40) ozone and water vapor reanalysis fields during the 1990s have been compared with independent satellite data from the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) instruments on board the Upper Atmosphere Research Satellite (UARS). In addition, ERA-40 has been compared with aircraft data from the Measurements of Ozone and Water Vapour by Airbus In-Service Aircraft (MOZAIC) program. Overall, in comparison with the values derived from the independent observations, the upper stratosphere in ERA-40 has about 5 - 10% more ozone and 15 - 20% less water vapor. This dry bias in the reanalysis appears to be global and extends into the middle stratosphere down to 40 hPa. Most of the discrepancies and seasonal variations between ERA-40 and the independent observations occur within the upper troposphere over the tropics and the lower stratosphere over the high latitudes. ERA-40 reproduces a weaker Antarctic ozone hole, and of less vertical extent, than the independent observations; values in the ozone maximum in the tropical stratosphere are lower for the reanalysis. ERA-40 mixing ratios of water vapor are considerably larger than those for MOZAIC, typically by 20% in the tropical upper troposphere, and they may exceed 60% in the lower stratosphere over high latitudes. The results imply that the Brewer-Dobson circulation in the ECMWF reanalysis system is too fast, as is also evidenced by deficiencies in the way ERA-40 reproduces the water vapor "tape recorder'' signal in the tropical stratosphere. Finally, the paper examines the biases and their temporal variation during the 1990s in the way ERA-40 compares to the independent observations. We also discuss how the evaluation results depend on the instrument used, as well as on the version of the data.
Resumo:
Calculations of the absorption of solar radiation by atmospheric gases, and water vapor in particular, are dependent on the quality of databases of spectral line parameters. There has been increasing scrutiny of databases such as HITRAN in recent years, but this has mostly been performed on a band-by-band basis. We report nine high-spectral-resolution (0.03 cm(-1)) measurements of the solar radiation reaching the surface in southern England over the wave number range 2000 to 12,500 cm(-1) (0.8 to 5 mm) that allow a unique assessment of the consistency of the spectral line databases over this entire spectral region. The data are assessed in terms of the modeled water vapor column that is required to bring calculations and observations into agreement; for an entirely consistent database, this water vapor column should be constant with frequency. For the HITRAN01 database, the spread in water vapor column is about 11%, with distinct shifts between different spectral regions. The HITRAN04 database is in significantly better agreement (about 5% spread) in the completely updated 3000 to 8000 cm(-1) spectral region, but inconsistencies between individual spectral regions remain: for example, in the 8000 to 9500 cm(-1) spectral region, the results indicate an 18% (+/- 1%) underestimate in line intensities with respect to the 3000 to 8000 cm(-1) region. These measurements also indicate the impact of isotopic fractionation of water vapor in the 2500 to 2900 cm(-1) range, where HDO lines dominate over the lines of the most abundant isotope of H2O.
Resumo:
High‐resolution infrared spectra of B2H6 vapor are reported. The sample was prepared from the naturally occurring 11B☒10B isotopic mixture. The rotational structure of the infrared bands has been analysed for Coriolis perturbations due to rotation about the axis of least moment of inertia (the B⋅⋅⋅B axis). The following results have been obtained: (a) interaction between the Type A fundamental ν18 and the inactive fundamental ν5 has been observed, thus confirming the assignment of ν5 at 833 cm—1, giving ∣ ζ5,18Z ∣=0.55±0.05; (b) interaction observed between the Type A combination band (ν10+ν12) at 1283 cm—1 and the inactive combination (ν10+ν7) gives an estimate of the unobserved fundamental ν7 as 850±30 cm—1, and an estimate of ∣ ζ7,12Z ∣=0.6±0.1; (c) the absence of any observed perturbation of the Type C fundamental ν14 at 973 cm—1, suggests, by negative arguments, that either the unobserved fundamental ν9 does not lie in the frequency range 900 to 1100 cm—1, or ∣ ζ9,14Z ∣<0.2. The assignment of the unobserved fundamental vibrations of diborane is discussed in the light of this evidence.
Resumo:
This article assesses the extent to which sampling variation affects findings about Malmquist productivity change derived using data envelopment analysis (DEA), in the first stage by calculating productivity indices and in the second stage by investigating the farm-specific change in productivity. Confidence intervals for Malmquist indices are constructed using Simar and Wilson's (1999) bootstrapping procedure. The main contribution of this article is to account in the second stage for the information in the second stage provided by the first-stage bootstrap. The DEA SEs of the Malmquist indices given by bootstrapping are employed in an innovative heteroscedastic panel regression, using a maximum likelihood procedure. The application is to a sample of 250 Polish farms over the period 1996 to 2000. The confidence intervals' results suggest that the second half of 1990s for Polish farms was characterized not so much by productivity regress but rather by stagnation. As for the determinants of farm productivity change, we find that the integration of the DEA SEs in the second-stage regression is significant in explaining a proportion of the variance in the error term. Although our heteroscedastic regression results differ with those from the standard OLS, in terms of significance and sign, they are consistent with theory and previous research.
Resumo:
At present, collective action regarding bio-security among UK cattle and sheep farmers is rare. Despite the occurrence of catastrophic livestock diseases such as bovine spongiform encephalopathy (BSE) and foot and mouth disease (FMD), within recent decades, there are few national or local farmer-led animal health schemes. To explore the reasons for this apparent lack of interest, we utilised a socio-psychological approach to disaggregate the cognitive, emotive and contextual factors driving bio-security behaviour among cattle and sheep farmers in the United Kingdom (UK). In total, we interviewed 121 farmers in South-West England and Wales. The main analytical tools included a content, cluster and logistic regression analysis. The results of the content analysis illustrated apparent 'dissonance' between bio-security attitudes and behaviour.(1) Despite the heavy toll animal disease has taken on the agricultural economy, most study participants were dismissive of the many measures associated with bio-security. Justification for this lack of interest was largely framed in relation to the collective attribution or blame for the disease threats themselves. Indeed, epidemic diseases were largely related to external actors and agents. Reasons for outbreaks included inadequate border control, in tandem with ineffective policies and regulations. Conversely, endemic livestock disease was viewed as a problem for 'bad' farmers and not an issue for those individuals who managed their stock well. As such, there was little utility in forming groups to address what was largely perceived as an individual problem. Further, we found that attitudes toward bio-security did not appear to be influenced by any particular source of information per se. While strong negative attitudes were found toward specific sources of bio-security information, e.g. government leaflets, these appear to simply reflect widely held beliefs. In relation to actual bio-security behaviours, the logistic regression analysis revealed no significant difference between in-scheme and out of scheme farmers. We concluded that in order to support collective action with regard to bio-security, messages need to be reframed and delivered from a neutral source. Efforts to support group formation must also recognise and address the issues relating to perceptions of social connectedness among the communities involved. (c) 2008 Elsevier B.V. All rights reserved.