69 resultados para Vaginal Delivery
em CentAUR: Central Archive University of Reading - UK
Resumo:
Fine sediment delivery to and storage in stream channel reaches can disrupt aquatic habitats, impact river hydromorphology, and transfer adsorbed nutrients and pollutants from catchment slopes to the fluvial system. This paper presents a modelling toot for simulating the time-dependent response of the fine sediment system in catchments, using an integrated approach that incorporates both land phase and in-stream processes of sediment generation, storage and transfer. The performance of the model is demonstrated by applying it to simulate in-stream suspended sediment concentrations in two lowland catchments in southern England, the Enborne and the Lambourn, which exhibit contrasting hydrological and sediment responses due to differences in substrate permeability. The sediment model performs well in the Enborne catchment, where direct runoff events are frequent and peak suspended sediment concentrations can exceed 600 mg l(-1). The general trends in the in-stream concentrations in the Lambourn catchment are also reproduced by the model, although the observed concentrations are low (rarely exceeding 50 mg l(-1)) and the background variability in the concentrations is not fully characterized by the model. Direct runoff events are rare in this highly permeable catchment, resulting in a weak coupling between the sediment delivery system and the catchment hydrology. The generic performance of the model is also assessed using a generalized sensitivity analysis based on the parameter bounds identified in the catchment applications. Results indicate that the hydrological parameters contributing to the sediment response include those controlling (1) the partitioning of runoff between surface and soil zone flows and (2) the fractional loss of direct runoff volume prior to channel delivery. The principal sediment processes controlling model behaviour in the simulations are the transport capacity of direct runoff and the in-stream generation, storage and release of the fine sediment fraction. The in-stream processes appear to be important in maintaining the suspended sediment concentrations during low flows in the River Enborne and throughout much of the year in the River Lambourn. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Many currently available drugs show unfavourable physicochemical properties for delivery into or across the skin and temporary chemical modulation of the penetrant is one option to achieve improved delivery properties. Pro-drugs are chemical derivatives of an active drug which is covalently bonded to an inactive pro-moiety in order to overcome pharmaceutical and pharmacokinetic barriers. A pro-drug relies upon conversion within the body to release the parent active drug (and pro-moiety) to elicit its pharmacological effect. The main drawback of this approach is that the pro-moiety is essentially an unwanted ballast which, when released, can lead to adverse effects. The term ‘co-drug’ refers to two or more therapeutic compounds active against the same disease bonded via a covalent chemical linkage and it is this approach which is reviewed for the first time in the current article. For topically applied co-drugs, each moiety is liberated in situ, either chemically or enzymatically, once the stratum corneum barrier has been overcome by the co-drug. Advantages include synergistic modulation of the disease process, enhancement of drug delivery and pharmacokinetic properties and the potential to enhance stability by masking of labile functional groups. The amount of published work on co-drugs is limited but the available data suggest the co-drug concept could provide a significant therapeutic improvement in dermatological diseases. However, the applicability of the co-drug approach is subject to strict limitations pertaining mainly to the availability of compatible moieties and physicochemical properties of the overall molecule.
Resumo:
Purpose This work probed the topical delivery and skin-staining properties of a novel co-drug, naproxyl-dithranol (Nap-DTH), which comprises anti-inflammatory (naproxen) and anti-proliferative (dithranol) moieties. Method Freshly excised, full-thickness porcine ear skin was dosed with saturated solutions of the compounds. After 24 h, the skin was recovered and used to prepare comparative depth profiles by the tape-stripping technique and to examine the extent of skin staining. Results Depth profiles showed that Nap-DTH led to a 5-fold increase in drug retention in the skin compared to dithranol. The application of Nap-DTH also demonstrated improved stability, resulting in lower levels of dithranol degradation products in the skin. Furthermore, significantly less naproxen from hydrolysed Nap-DTH permeated into the receptor phase compared to naproxen when applied alone (0.08 ± 0.03 nmol cm-² and 180 ± 60 nmol cm-², respectively). Moreover, the reduced staining of the skin was very apparent for Nap-DTH compared to dithranol. Conclusions Topical delivery of Nap-DTH not only improves the delivery of naproxen and dithranol, but also reduces unwanted effects of the parent moieties, in particular the skin staining, which is a major issue concerning the use of dithranol.
Resumo:
Different formulations of Bacillus subtilis were prepared using standard laboratory protocols. Bacillus subtilis survived in glucose and talc powders at 8.6 and 7.8 log(10) CFU/g, respectively, for 1 year of storage at room temperature compared with 3.5 log(10) CFU/g on a peat formulation. Glasshouse experiments using soil and seed treatments were conducted to test the efficacy of B. subtilis for protecting lentil against the wilt disease caused by Fusariumoxysporum f. sp. lentis. Seed treatments with formulations of B. subtilis on glucose, talc and peat significantly enhanced its biocontrol activity against Fusarium compared with a treatment in which spores were applied directly to seed. The formulations decreased disease severity by reducing colonization of plants by the pathogen, promoting their growth and increased the dry weight of lentil plants. Of these treatments the glucose and talc-based powder formulations were more effective than the peat formulation and the spore application without a carrier. It was shown that the B. subtilis spores applied with glucose were viable for longer than those applied with other carriers. Seed treatment with these formulated spores is an effective delivery system that can provide a conducive environment for B. subtilis to suppress vascular wilt disease on lentil and has the potential for utilization in commercial field application.
Resumo:
Expression of biologically active molecules as fusion proteins with antibody Fc can substantially extend the plasma half-life of the active agent but may also influence function. We have previously generated a number of fusion proteins comprising a complement regulator coupled to Fc and shown that the hybrid molecule has a long plasma half-life and retains biological activity. However, several of the fusion proteins generated had substantially reduced biological activity when compared with the native regulator or regulator released from the Fc following papain cleavage. We have taken advantage of this finding to engineer a prodrug with low complement regulatory activity that is cleaved at sites of inflammation to release active regulator. Two model prodrugs, comprising, respectively, the four short consensus repeats of human decay accelerating factor (CD55) linked to IgG4 Fc and the three NH2-terminal short consensus repeats of human decay accelerating factor linked to IgG2 Fc have been developed. In each, specific cleavage sites for matrix metalloproteinases and/or aggrecanases have been incorporated between the complement regulator and the Fc. These prodrugs have markedly decreased complement inhibitory activity when compared with the parent regulator in vitro. Exposure of the prodrugs to the relevant enzymes, either purified, or in supernatants of cytokine-stimulated chondrocytes or in synovial fluid, efficiently cleaved the prodrug, releasing active regulator. Such agents, having negligible systemic effects but active at sites of inflammation, represent a paradigm for the next generation of anti-C therapeutics.
Resumo:
TGF-beta1 levels increase after vascular injury and promote vascular smooth muscle cell (VSMC) proliferation. We define a nonviral gene delivery system that targets alphavbeta3 and alpha5beta1 integrins that are expressed on proliferating VSMCs and strongly induced by TGF-beta1. A 15-amino acid RGDNP-containing peptide from American Pit Viper venom was linked to a Lys(16) peptide as vector (molossin vector) and complexed with Lipofectamine or fusogenic peptide for delivery of luciferase or beta-galactosidase reporter genes to primary cultures of human, rabbit, and rat VSMCs. Preincubation of VSMCs with TGF-beta1 for 24 h, but not with PDGF-BB, interferon-gamma, TNF-alpha, nor PMA, increased alphavbeta3 and alpha5beta1 expressions on VSMCs and enhanced gene delivery of molossin vector. Thus beta-galactosidase activity increased from 35 +/- 5% (controls) to 75 +/- 5% after TGF-beta1 treatment, and luciferase activity increased fourfold over control values. Potential use of this system in vessel bypass surgery was examined in an ex vivo rat aortic organ culture model after endothelial damage. Molossin vector system delivered beta-galactosidase to VSMCs in the vessel wall that remained for up to 12 days posttransfection. The molossin vector system, when combined with TGF-beta1, enhances gene delivery to proliferating VSMCs and might have clinical applications for certain vasculoproliferative diseases.
Resumo:
Dendrimers and hyperbranched polymers are a relatively new class of materials with unique molecular architectures and dimensions in comparison to traditional linear polymers. This review details recent notable advances in the application of these new polymers in terms of the development of new polymeric delivery systems. Although comparatively young, the developing field of hyperbranched drug delivery devices is a rapidly maturing area and the key discoveries in drug-conjugate systems amongst others are highlighted. As a consequence of their ideal hyperbranched architectures, the utilisation of host-guest chemistries in dendrimers has been included within the scope of this review. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
There is a lack of knowledge base in relation to experiences gained and lessons learnt from previously executed National Health Service (NHS) infrastructure projects in the UK. This is in part a feature of one-off construction projects, which typify healthcare infrastructure, and in part due to the absence of a suitable method for conveying such information. The complexity of infrastructure delivery process in the NHS makes the construction of healthcare buildings a formidable task. This is particularly the case for the NHS trusts who have little or no experience of construction projects. To facilitate understanding a most important aspect of the delivery process, which is the preparation of a capital investment proposal; steps taken in developing the business case for an NHS healthcare facility are examined. The context for such examination is provided by the planning process of a healthcare project, studied retrospectively. The process is analysed using a social science based method called ‘building stories’, developed at the University of California-Berkeley. By applying this method, stories or narratives are constructed around the data captured on the case study. The findings indicate that the business case process may be used to justify, rather than identify, trusts’ requirements. The study is useful for UK public sector clients as well as consultants and professionals who aim to participate in the delivery of healthcare infrastructure projects in the UK.
Resumo:
Managing a construction project supply chain effectively and efficiently is extremely difficult due to involvement of numerous sectors that are supported by ineffective communication system. An efficient construction supply chain system ensures the delivery of materials and other services to construction site while minimising costs and rewarding all sectors based on value added to the supply chain. The advancement of information, communication and wireless technologies is driving construction companies to deploy supply chain management strategies to seek better outputs. As part of the emerging wireless technologies, contextaware computing capability represents the next generation of ICT to the construction services. Conceptually, context-awareness could be integrated with Web Services in order to ensure the delivery of pertinent information to construction site and enhance construction supply chain collaboration. An initial study has indicated that this integrated system has the potential of serving and improving the construction services delivery through access to context-specific data, information and services on as-needed basis.
Resumo:
Aims and objectives. To examine the impact of written and verbal education on bed-making practices, in an attempt to reduce the prevalence of pressure ulcers. Background. The Department of Health has set targets for a 5% reduction per annum in the incidence of pressure ulcers. Electric profiling beds with a visco-elastic polymer mattress are a new innovation in pressure ulcer prevention; however, mattress efficacy is reduced by tightly tucking sheets around the mattress. Design. A prospective randomized pre/post-test experimental design. Methods. Ward managers at a teaching hospital were approached to participate in the study. Two researchers independently examined the tightness of the sheets around the mattresses. Wards were randomized to one of two groups. Groups A and B received written education. In addition, group B received verbal education on alternate days for one week. Beds were re-examined one month later. One researcher was blinded to the educational delivery received by the wards. Results. Twelve wards agreed to participate in the study and 245 beds were examined. Before education, 113 beds (46%) had sheets tucked correctly around the mattresses. Following education, this increased to 215 beds (87.8%) (chi(2) = 68.03, P < 0.001). There was no significant difference in the number of correctly made beds between the two different education groups: 100 (87.72%) beds correctly made in group A vs. 115 (87.79%) beds in group B (chi(2) = 0, P 0.987). Conclusions. Clear, concise written instruction improved practice but verbal education was not additionally beneficial. Relevance to clinical practice. Nurses are receptive to clear, concise written evidence regarding pressure ulcer prevention and incorporate this into clinical practice.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.