5 resultados para VISUAL EXPLORATION

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facilitating the visual exploration of scientific data has received increasing attention in the past decade or so. Especially in life science related application areas the amount of available data has grown at a breath taking pace. In this paper we describe an approach that allows for visual inspection of large collections of molecular compounds. In contrast to classical visualizations of such spaces we incorporate a specific focus of analysis, for example the outcome of a biological experiment such as high throughout screening results. The presented method uses this experimental data to select molecular fragments of the underlying molecules that have interesting properties and uses the resulting space to generate a two dimensional map based on a singular value decomposition algorithm and a self organizing map. Experiments on real datasets show that the resulting visual landscape groups molecules of similar chemical properties in densely connected regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual exploration of scientific data in life science area is a growing research field due to the large amount of available data. The Kohonen’s Self Organizing Map (SOM) is a widely used tool for visualization of multidimensional data. In this paper we present a fast learning algorithm for SOMs that uses a simulated annealing method to adapt the learning parameters. The algorithm has been adopted in a data analysis framework for the generation of similarity maps. Such maps provide an effective tool for the visual exploration of large and multi-dimensional input spaces. The approach has been applied to data generated during the High Throughput Screening of molecular compounds; the generated maps allow a visual exploration of molecules with similar topological properties. The experimental analysis on real world data from the National Cancer Institute shows the speed up of the proposed SOM training process in comparison to a traditional approach. The resulting visual landscape groups molecules with similar chemical properties in densely connected regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes experiments relating to the perception of the roughness of simulated surfaces via the haptic and visual senses. Subjects used a magnitude estimation technique to judge the roughness of “virtual gratings” presented via a PHANToM haptic interface device, and a standard visual display unit. It was shown that under haptic perception, subjects tended to perceive roughness as decreasing with increased grating period, though this relationship was not always statistically significant. Under visual exploration, the exact relationship between spatial period and perceived roughness was less well defined, though linear regressions provided a reliable approximation to individual subjects’ estimates.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study investigated early years teachers’ understanding and use of graphic symbols, defined as the visual representation(s) used to communicate one or more “linguistic” concepts, which can be used to facilitate science learning. The study was conducted in Cyprus where six early years teachers were observed and interviewed. The results indicate that the teachers had a good understanding of the role of symbols, but demonstrated a lack of understanding in regards to graphic symbols specifically. None of the teachers employed them in their observed science lesson, although some of them claimed that they did so. Findings suggest a gap in participants’ acquaintance with the terminology regarding different types of symbols and a lack of awareness about the use and availability of graphic symbols for the support of learning. There is a need to inform and train early years teachers about graphic symbols and their potential applications in supporting children’s learning.