86 resultados para VENTRAL HIPPOCAMPUS

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations in several classes of embryonically-expressed transcription factor genes are associated with behavioral disorders and epilepsies. However, there is little known about how such genetic and neurodevelopmental defects lead to brain dysfunction. Here we present the characterization of an epilepsy syndrome caused by the absence of the transcription factor SOX1 in mice. In vivo electroencephalographic recordings from SOX1 mutants established a correlation between behavioral changes and cortical output that was consistent with a seizure origin in the limbic forebrain. In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges. Furthermore, the hyperexcitability of the OC neurons was present in mutants prior to the onset of seizures but was completely absent from both the hippocampus and neocortex of the same animals. The local inhibitory GABAergic neurotransmission remained normal in the OC of SOX1-deficient brains, but there was a severe developmental deficit of OC postsynaptic target neurons, mainly GABAergic projection neurons within the olfactory tubercle and the nucleus accumbens shell. Our data show that SOX1 is essential for ventral telencephalic development and suggest that the neurodevelopmental defect disrupts local neuronal circuits leading to epilepsy in the SOX1-deficient mice

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anatomically segregated systems linking the frontal cortex and the striatum are involved in various aspects of cognitive, affective, and motor processing. In this study, we examined the effects of combined unilateral lesions of the medial prefrontal cortex (mPFC) and the core subregion of the nucleus accumbens (AcbC) in opposite hemispheres (disconnection) on a continuous performance, visual attention test [five-choice serial reaction-time task (5CSRTT)]. The disconnection lesion produced a set of specific changes in performance of the 5CSRTT, resembling changes that followed bilateral AcbC lesions while, in addition, comprising a subset of the behavioral changes after bilateral mPFC lesions previously reported using the same task. Specifically, both mPFC/AcbC disconnection and bilateral AcbC lesions markedly affected aspects of response control related to affective feedback, as indexed by perseverative responding in the 5CSRTT. These effects were comparable, although not identical, to those in animals with either bilateral AcbC or mPFC/AcbC disconnection lesions. The mPFC/AcbC disconnection resulted in a behavioral profile largely distinct from that produced by disconnection of a similar circuit described previously, between the mPFC and the dorsomedial striatum, which were shown to form a functional network underlying aspects of visual attention and attention to action. This distinction provides an insight into the functional specialization of corticostriatal circuits in similar behavioral contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide range of cell culture, animal and human epidemiological studies are suggestive of a role of vitamin E (VE) in brain function and in the prevention of neurodegeneration. However, the underlying molecular mechanisms remain largely unknown. In the current investigation Affymetrix gene chip technology was utilised to establish the impact of chronic VE deficiency on hippocampal genes expression. Male albino rats were fed either a VE deficient or standard diet (60 mg/kg feed) for a period of 9 months. Rats were sacrificed, the hippocampus removed and genes expression established in individual animals. VE deficiency showed to have a strong impact on genes expression in the hippocampus. An important number of genes found to be regulated by VE was associated with hormones and hormone metabolism, nerve growth factor, apoptosis, dopaminergic neurotransmission, and clearance of amyloid-beta and advanced glycated endproducts. In particular, VE strongly affected the expression of an array of genes encoding for proteins directly or indirectly involved in the clearance of amyloid beta, changes which are consistent with a protective effect of VE on Alzheimer's disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats with fornix transection, or with cytotoxic retrohippocampal lesions that removed entorhinal cortex plus ventral subiculum, performed a task that permits incidental learning about either allocentric (Allo) or egocentric (Ego) spatial cues without the need to navigate by them. Rats learned eight visual discriminations among computer-displayed scenes in a Y-maze, using the constant-negative paradigm. Every discrimination problem included two familiar scenes (constants) and many less familiar scenes (variables). On each trial, the rats chose between a constant and a variable scene, with the choice of the variable rewarded. In six problems, the two constant scenes had correlated spatial properties, either Alto (each constant appeared always in the same maze arm) or Ego (each constant always appeared in a fixed direction from the start arm) or both (Allo + Ego). In two No-Cue (NC) problems, the two constants appeared in randomly determined arms and directions. Intact rats learn problems with an added Allo or Ego cue faster than NC problems; this facilitation provides indirect evidence that they learn the associations between scenes and spatial cues, even though that is not required for problem solution. Fornix and retrohippocampal-lesioned groups learned NC problems at a similar rate to sham-operated controls and showed as much facilitation of learning by added spatial cues as did the controls; therefore, both lesion groups must have encoded the spatial cues and have incidentally learned their associations with particular constant scenes. Similar facilitation was seen in subgroups that had short or long prior experience with the apparatus and task. Therefore, neither major hippocampal input-output system is crucial for learning about allocentric or egocentric cues in this paradigm, which does not require rats to control their choices or navigation directly by spatial cues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Auditory discrimination is significantly impaired in Wernicke’s aphasia (WA) and thought to be causatively related to the language comprehension impairment which characterises the condition. This study used mismatch negativity (MMN) to investigate the neural responses corresponding to successful and impaired auditory discrimination in WA. Methods: Behavioural auditory discrimination thresholds of CVC syllables and pure tones were measured in WA (n=7) and control (n=7) participants. Threshold results were used to develop multiple-deviant mismatch negativity (MMN) oddball paradigms containing deviants which were either perceptibly or non-perceptibly different from the standard stimuli. MMN analysis investigated differences associated with group, condition and perceptibility as well as the relationship between MMN responses and comprehension (within which behavioural auditory discrimination profiles were examined). Results: MMN waveforms were observable to both perceptible and non-perceptible auditory changes. Perceptibility was only distinguished by MMN amplitude in the PT condition. The WA group could be distinguished from controls by an increase in MMN response latency to CVC stimuli change. Correlation analyses displayed relationship between behavioural CVC discrimination and MMN amplitude in the control group, where greater amplitude corresponded to better discrimination. The WA group displayed the inverse effect; both discrimination accuracy and auditory comprehension scores were reduced with increased MMN amplitude. In the WA group, a further correlation was observed between the lateralisation of MMN response and CVC discrimination accuracy; the greater the bilateral involvement the better the discrimination accuracy. Conclusions: The results from this study provide further evidence for the nature of auditory comprehension impairment in WA and indicate that the auditory discrimination deficit is grounded in a reduced ability to engage in efficient hierarchical processing and the construction of invariant auditory objects. Correlation results suggest that people with chronic WA may rely on an inefficient, noisy right hemisphere auditory stream when attempting to process speech stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17beta estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GPR30, a former orphan GPCR, is a putative membrane estrogen receptor that can activate rapid signaling pathways such as extracellular regulated kinase (ERK) in a variety of cells and may contribute to estrogen's effects in the central nervous system. The distribution of GPR30 in the limbic system predicts a role for this receptor in the regulation of learning and memory and anxiety by estrogens. Though acute G-1 treatment is reported to be anxiogenic in ovariectomised female mice and in gonadally intact male mice, the effect of GPR30 activation is unknown in gonadectomised male mice. In this study, we show that an acute administration of G-1 to gonadectomised male mice, but not female mice, was anxiolytic on an elevated plus maze task, without affecting locomotor activity. In addition, though G-1 treatment did not regulate ERK, it was associated with increased estrogen receptor (ER)alpha phosphorylation in the ventral, but not dorsal, hippocampus of males. In the female, G-1 increased the ERK activation solely in the dorsal hippocampus, independent of state anxiety. This is the first study to report an anxiolytic effect of GPR30 activation in male mice, in a rapid time frame that is commensurate with non-genomic signaling by estrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an immersive virtual environment, observers fail to notice the expansion of a room around them and consequently make gross errors when comparing the size of objects. This result is difficult to explain if the visual system continuously generates a 3-D model of the scene based on known baseline information from interocular separation or proprioception as the observer walks. An alternative is that observers use view-based methods to guide their actions and to represent the spatial layout of the scene. In this case, they may have an expectation of the images they will receive but be insensitive to the rate at which images arrive as they walk. We describe the way in which the eye movement strategy of animals simplifies motion processing if their goal is to move towards a desired image and discuss dorsal and ventral stream processing of moving images in that context. Although many questions about view-based approaches to scene representation remain unanswered, the solutions are likely to be highly relevant to understanding biological 3-D vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we show inverse fMRI activation patterns in amygdala and medial prefrontal cortex (mPFC) depending upon whether subjects interpreted surprised facial expressions positively or negatively. More negative interpretations of surprised faces were associated with greater signal changes in the right ventral amygdala, while more positive interpretations were associated with greater signal changes in the ventral mPFC. Accordingly, signal change within these two areas was inversely correlated. Thus, individual differences in the judgment of surprised faces are related to a systematic inverse relationship between amygdala and mPFC activity, a circuitry that the animal literature suggests is critical to the assessment of stimuli that predict potential positive vs negative outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently demonstrated a functional relationship between fMRI responses within the amygdala and the medial prefrontal cortex based upon whether subjects interpreted surprised facial expressions positively or negatively. In the present fMRI study, we sought to assess amygdala-medial prefrontal cortex responsivity when the interpretations of surprised faces were determined by contextual experimental stimuli, rather than subjective judgment. Subjects passively viewed individual presentations of surprised faces preceded by either a negatively or positively valenced contextual sentence (e. g., She just found $500 vs. She just lost $500). Negative and positive sentences were carefully matched in terms of length, situations described, and arousal level. Negatively cued surprised faces produced greater ventral amygdala activation compared to positively cued surprised faces. Responses to negative versus positive sentences were greater within the ventrolateral prefrontal cortex, whereas responses to positive versus negative sentences were greater within the ventromedial prefrontal cortex. The present study demonstrates that amygdala response to surprised facial expressions can be modulated by negatively versus positively valenced verbal contextual information. Connectivity analyses identified candidate cortical-subcortical systems subserving this modulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Previous functional imaging studies demonstrating amygdala response to happy facial expressions have all included the presentation of negatively valenced primary comparison expressions within the experimental context. This study assessed amygdala response to happy and neutral facial expressions in an experimental paradigm devoid of primary negatively valenced comparison expressions. METHODS: Sixteen human subjects (eight female) viewed 16-sec blocks of alternating happy and neutral faces interleaved with a baseline fixation condition during two functional magnetic resonance imaging scans. RESULTS: Within the ventral amygdala, a negative correlation between happy versus neutral signal changes and state anxiety was observed. The majority of the variability associated with this effect was explained by a positive relationship between state anxiety and signal change to neutral faces. CONCLUSIONS: Interpretation of amygdala responses to facial expressions of emotion will be influenced by considering the contribution of each constituent condition within a greater subtractive finding, as well as 1) their spatial location within the amygdaloid complex; and 2) the experimental context in which they were observed. Here, an observed relationship between state anxiety and ventral amygdala response to happy versus neutral faces was explained by response to neutral faces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease s attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.