10 resultados para Urban canyons

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under low latitude conditions, minimization of solar radiation within the urban environment may often be a desirable criterion in urban design. The dominance of the direct component of the global solar irradiance under clear high sun conditions requires that the street solar access must be small. It is well known that the size and proportion of open spaces has a great influence on the urban microclimate This paper is directed towards finding the interaction between urban canyon geometry and incident solar radiation. The effect of building height and street width on the shading of the street surfaces and ground for different orientations have been examined and evaluated. It is aimed to explore the extent to which these parameters affect the temperature in the street. This work is based on air and surface temperature measurements taken in different urban street canyons in EL-Oued City (hot and and climate), Algeria. In general, the results show that there are less air temperature variations compared to the surface temperature which really depends on the street geometry and sky view factor. In other words, there is a big correlation between the street geometry, sky view factor and surface temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under low latitude conditions, minimisation of solar irradiance within the urban environment may often be an important criterion in urban design. This can be achieved when the obstruction angle is large (high H/W ratio, H = height, W = width). Solar access to streets can always be decreased by increasing H/W to larger values. It is shown in this paper that the street canyon orientation (and not only the H/W ratio) has a considerable effect on solar shading and urban microclimate. The paper demonstrates through a series of shading simulation and temperature measurements that a number of useful relationships can be developed between the geometry and the microclimate of urban street canyons. These relationships are potentially helpful to assist in the formulation of urban design guidelines governing street dimensions and orientations for use by urban designers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to illustrate the impact of urban wind environments when assessing the availability of natural ventilation. A numerical study of urban airflow for a complex of five building blocks located at the University of Reading, UK is presented. The computational fluid dynamics software package ANSYS was used to simulate six typical cases of urban wind environments and the potential for natural ventilation assessed. The study highlights the impact of three typical architectural forms (street canyons, semi-enclosures and courtyards) on the local wind environment. Simulation results have also been compared with experimental data collected from six locations on the building complex. The study demonstrates that ventilation strategies formed using regional weather data, may have a propensity to over-estimate the potential for natural ventilation and cooling, due to the impact of urban form which creates a unique microclimate. Characteristics of urban wind flow patterns are presented as a guideline and can be used to assess the design and performance of natural or hybrid ventilation and the opportunity for passive cooling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he first international urban land surface model comparison was designed to identify three aspects of the urban surface-atmosphere interactions: (1) the dominant physical processes, (2) the level of complexity required to model these, and 3) the parameter requirements for such a model. Offline simulations from 32 land surface schemes, with varying complexity, contributed to the comparison. Model results were analysed within a framework of physical classifications and over four stages. The results show that the following are important urban processes; (i) multiple reflections of shortwave radiation within street canyons, (ii) reduction in the amount of visible sky from within the canyon, which impacts on the net long-wave radiation, iii) the contrast in surface temperatures between building roofs and street canyons, and (iv) evaporation from vegetation. Models that use an appropriate bulk albedo based on multiple solar reflections, represent building roof surfaces separately from street canyons and include a representation of vegetation demonstrate more skill, but require parameter information on the albedo, height of the buildings relative to the width of the streets (height to width ratio), the fraction of building roofs compared to street canyons from a plan view (plan area fraction) and the fraction of the surface that is vegetated. These results, whilst based on a single site and less than 18 months of data, have implications for the future design of urban land surface models, the data that need to be measured in urban observational campaigns, and what needs to be included in initiatives for regional and global parameter databases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is becoming increasingly important that we can understand and model flow processes in urban areas. Applications such as weather forecasting, air quality and sustainable urban development rely on accurate modelling of the interface between an urban surface and the atmosphere above. This review gives an overview of current understanding of turbulence generated by an urban surface up to a few building heights, the layer called the roughness sublayer (RSL). High quality datasets are also identified which can be used in the development of suitable parameterisations of the urban RSL. Datasets derived from physical and numerical modelling, and full-scale observations in urban areas now exist across a range of urban-type morphologies (e.g. street canyons, cubes, idealised and realistic building layouts). Results show that the urban RSL depth falls within 2 – 5 times mean building height and is not easily related to morphology. Systematic perturbations away from uniform layouts (e.g. varying building heights) have a significant impact on RSL structure and depth. Considerable fetch is required to develop an overlying inertial sublayer, where turbulence is more homogeneous, and some authors have suggested that the “patchiness” of urban areas may prevent inertial sublayers from developing at all. Turbulence statistics suggest similarities between vegetation and urban canopies but key differences are emerging. There is no consensus as to suitable scaling variables, e.g. friction velocity above canopy vs. square root of maximum Reynolds stress, mean vs. maximum building height. The review includes a summary of existing modelling practices and highlights research priorities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eddy covariance has been used in urban areas to evaluate the net exchange of CO2 between the surface and the atmosphere. Typically, only the vertical flux is measured at a height 2–3 times that of the local roughness elements; however, under conditions of relatively low instability, CO2 may accumulate in the airspace below the measurement height. This can result in inaccurate emissions estimates if the accumulated CO2 drains away or is flushed upwards during thermal expansion of the boundary layer. Some studies apply a single height storage correction; however, this requires the assumption that the response of the CO2 concentration profile to forcing is constant with height. Here a full seasonal cycle (7th June 2012 to 3rd June 2013) of single height CO2 storage data calculated from concentrations measured at 10 Hz by open path gas analyser are compared to a data set calculated from a concurrent switched vertical profile measured (2 Hz, closed path gas analyser) at 10 heights within and above a street canyon in central London. The assumption required for the former storage determination is shown to be invalid. For approximately regular street canyons at least one other measurement is required. Continuous measurements at fewer locations are shown to be preferable to a spatially dense, switched profile, as temporal interpolation is ineffective. The majority of the spectral energy of the CO2 storage time series was found to be between 0.001 and 0.2 Hz (500 and 5 s respectively); however, sampling frequencies of 2 Hz and below still result in significantly lower CO2 storage values. An empirical method of correcting CO2 storage values from under-sampled time series is proposed.