46 resultados para Uranus (Planet)

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use proper orthogonal decomposition (POD) to study a transient teleconnection event at the onset of the 2001 planet-encircling dust storm on Mars, in terms of empirical orthogonal functions (EOFs). There are several differences between this and previous studies of atmospheric events using EOFs. First, instead of using a single variable such as surface pressure or geopotential height on a given pressure surface, we use a dataset describing the evolution in time of global and fully three-dimensional atmospheric fields such as horizontal velocity and temperature. These fields are produced by assimilating Thermal Emission Spectrometer observations from NASA's Mars Global Surveyor spacecraft into a Mars general circulation model. We use total atmospheric energy (TE) as a physically meaningful quantity which weights the state variables. Second, instead of adopting the EOFs to define teleconnection patterns as planetary-scale correlations that explain a large portion of long time-scale variability, we use EOFs to understand transient processes due to localised heating perturbations that have implications for the atmospheric circulation over distant regions. The localised perturbation is given by anomalous heating due to the enhanced presence of dust around the northern edge of the Hellas Planitia basin on Mars. We show that the localised disturbance is seemingly restricted to a small number (a few tens) of EOFs. These can be classified as low-order, transitional, or high-order EOFs according to the TE amount they explain throughout the event. Despite the global character of the EOFs, they show the capability of accounting for the localised effects of the perturbation via the presence of specific centres of action. We finally discuss possible applications for the study of terrestrial phenomena with similar characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main instrument of the Government's renewable energy policy is to promote wind power through regulation and subsidy. This gives rise to anomalies in rural planning when turbines are erected in sensitve areas in which other forms of development are strictly controlled. The situation is reviewed in the context of economic viability and considered also against the alternative of growing fuel crops. The latter are currently hampered by lack of Government support but could fulfil a useful secondary role of sustaining the agricultural sector and with it the management of lowland landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Aqua-Planet Experiment (APE) was first proposed by Neale and Hoskins (2000a) as a benchmark for atmospheric general circulation models (AGCMs) on an idealised water-covered Earth. The experiment and its aims are summarised, and its context within a modelling hierarchy used to evaluate complex models and to provide a link between realistic simulation and conceptual models of atmospheric phenomena is discussed. The simplified aqua-planet configuration bridges a gap in the existing hierarchy. It is designed to expose differences between models and to focus attention on particular phenomena and their response to changes in the underlying distribution of sea surface temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea-ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 1–2% of net primary production by land plants is re-emitted to the atmosphere as isoprene and monoterpenes. These emissions play major roles in atmospheric chemistry and air pollution–climate interactions. Phenomenological models have been developed to predict their emission rates, but limited understanding of the function and regulation of these emissions has led to large uncertainties in model projections of air quality and greenhouse gas concentrations. We synthesize recent advances in diverse fields, from cell physiology to atmospheric remote sensing, and use this information to propose a simple conceptual model of volatile isoprenoid emission based on regulation of metabolism in the chloroplast. This may provide a robust foundation for scaling up emissions from the cellular to the global scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun’s planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus’ atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency’s call for science themes for its large-class mission programme in 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disequilibria between Pb-210 and Ra-226 can be used to trace magma degassing, because the intermediate nuclides, particularly Rn-222, are volatile. Products of the 1980-1986 eruptions of Mount St. Helens have been analysed for (Pb-210/Ra-226). Both excesses and deficits of Pb-210 are encountered suggesting rapid gas transfer. The time scale of diffuse, non-eruptive gas escape prior to 1980 as documented by Pb-210 deficits is on the order of a decade using the model developed by Gauthier and Condomines (Earth Planet. Sci. Lett. 172 (1999) 111-126) for a non-renewed magma chamber and efficient Rn removal. The time required to build-up Pb-210 excess is much shorter (months) as can be observed from steady increases of (Pb-210/Ra-226) with time during 1980-1982. The formation of Pb-210 excess requires both rapid gas transport through the magma and periodic blocking of gas escape routes. Superposed on this time trend is the natural variability of (Pb-210/Ra-226) in a single eruption caused by tapping magma from various depths. The two time scales of gas transport, to create both Pb-210 deficits and Pb-210 excesses, cannot be reconciled in a single event. Rather Pb-210 deficits are associated with pre-eruptive diffuse degassing, while Pb-210 excesses document the more vigorous degassing associated with eruption and recharge of the system. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies using the Hadley Centre coupled model (HadCM3) have shown that the islands of the Maritime Continent act as an unrealistic block to the eastward propagation of the Madden-Julian Oscillation (MJO). This blocking effect is investigated using a simplified, aqua-planet version of this GCM, with various idealized configurations of the Maritime Continent islands placed on the equator, and an MJO-like convective signal forced by a propagating sea-surface temperature anomaly dipole. Results suggest that it is the orography of the islands, rather than the presence of the islands themselves, which results in the blocking of the MJO. Although the peak elevation of the orography in the GCM is very much lower than in reality, it appears to act as effective block to the eastward propagation of the low-level Kelvin wave signal which accompanies the MJO. In particular, the representation of Sumatra in the GCM, as a north-south oriented ridge straddling the equator, seems to be particularly effective at blocking the Kelvin wave signal, which in a full GCM would result in the weakening or complete extinction of the MJO signal to the east of the Maritime Continent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The definitions of the base units of the international system of units have been revised many times since the idea of such an international system was first conceived at the time of the French revolution. The objective today is to define all our units in terms of 'invariants of nature', i.e. by referencing our units to the fundamental constants of physics, or the properties of atoms, rather than the characteristics of our planet or of artefacts. This situation is reviewed, particularly in regard to finding a new definition of the kilogram to replace its present definition in terms of a prototype material artefact.