121 resultados para Unsupervised techniques

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review introduces the methods used to simulate the processes affecting dissolved oxygen (DO) in lowland rivers. The important processes are described and this provides a modelling framework to describe those processes in the context of a mass-balance model. The process equations that are introduced all require (reaction) rate parameters and a variety of common procedures for identifying those parameters are reviewed. This is important because there is a wide range of estimation techniques for many of the parameters. These different techniques elicit different estimates of the parameter value and so there is the potential for a significant uncertainty in the model's inputs and therefore in the output too. Finally, the data requirements for modelling DO in lowland rivers are summarised on the basis of modelling the processes described in this review using a mass-balance model. This is reviewed with regard to what data are available and from where they might be obtained. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing can potentially provide information useful in improving pollution transport modelling in agricultural catchments. Realisation of this potential will depend on the availability of the raw data, development of information extraction techniques, and the impact of the assimilation of the derived information into models. High spatial resolution hyperspectral imagery of a farm near Hereford, UK is analysed. A technique is described to automatically identify the soil and vegetation endmembers within a field, enabling vegetation fractional cover estimation. The aerially-acquired laser altimetry is used to produce digital elevation models of the site. At the subfield scale the hypothesis that higher resolution topography will make a substantial difference to contaminant transport is tested using the AGricultural Non-Point Source (AGNPS) model. Slope aspect and direction information are extracted from the topography at different resolutions to study the effects on soil erosion, deposition, runoff and nutrient losses. Field-scale models are often used to model drainage water, nitrate and runoff/sediment loss, but the demanding input data requirements make scaling up to catchment level difficult. By determining the input range of spatial variables gathered from EO data, and comparing the response of models to the range of variation measured, the critical model inputs can be identified. Response surfaces to variation in these inputs constrain uncertainty in model predictions and are presented. Although optical earth observation analysis can provide fractional vegetation cover, cloud cover and semi-random weather patterns can hinder data acquisition in Northern Europe. A Spring and Autumn cloud cover analysis is carried out over seven UK sites close to agricultural districts, using historic satellite image metadata, climate modelling and historic ground weather observations. Results are assessed in terms of probability of acquisition probability and implications for future earth observation missions. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ochre samples excavated from the neolithic site at Qatalhoyuk, Turkey have been compared with "native" ochres from Clearwell Caves, UK using infrared spectroscopy backed up by Raman spectroscopy, scanning electron microscopy (with energy-dispersive X-rays (EDX) analysis), powder X-ray diffraction, diffuse reflection UV-Vis and atomic absorption spectroscopies. For the Clearwell Caves ochres, which range in colour from yellow-orange to red-brown, it is shown that the colour is related to the nature of the chromophore present and not to any differences in particle size. The darker red ochres contain predominantly haematite while the yellow ochre contains only goethite. The ochres from Qatalhoyuk contain only about one-twentieth of the levels of iron found in the Clearwell Caves ochres. The iron oxide pigment (haematite in all cases studied here) has been mixed with a soft lime plaster which also contains calcite and silicate (clay) minerals. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time-of-flight technique is used on a small-angle neutron scattering instrument to separate the energies of the scattered neutrons, in order to determine the origin of the temperature-dependent scattering observed from silicon at Q > similar to 0.1 angstrom(-1). A quantitative analysis of the results in comparison with the phonon dispersion curves, determined by Dolling using a triple-axis neutron spectrometer, shows that the temperature-dependent scattering can be understood in terms of Umklapp processes whereby neutrons gain energy from phonons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past decade, the amount of data in biological field has become larger and larger; Bio-techniques for analysis of biological data have been developed and new tools have been introduced. Several computational methods are based on unsupervised neural network algorithms that are widely used for multiple purposes including clustering and visualization, i.e. the Self Organizing Maps (SOM). Unfortunately, even though this method is unsupervised, the performances in terms of quality of result and learning speed are strongly dependent from the neuron weights initialization. In this paper we present a new initialization technique based on a totally connected undirected graph, that report relations among some intersting features of data input. Result of experimental tests, where the proposed algorithm is compared to the original initialization techniques, shows that our technique assures faster learning and better performance in terms of quantization error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, there is much anxiety regarding the security of energy supplies; for example, the UK and other European States are set to become increasingly dependant upon imports of natural gas from states with which political relations are often strained. These uncertainties are felt acutely by the electricity generating sector, which is facing major challenges regarding the choice of fuel mix in the years ahead. Nuclear energy may provide an alternative; however, in the UK, progress in replacing the first generation reactors is exceedingly slow. A number of operators are looking to coal as a means of plugging the energy gap. However, in the light of ever more stringent legal controls on emissions, this step cannot be taken without the adoption of sophisticated pollution abatement technology. This article examines the role which legal concepts such as Best Available Techniques (BAT) must play in bringing about these changes.