5 resultados para Unified modeling language
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper introduces a pragmatic and practical method for requirements modeling. The method is built using the concepts of our goal sketching technique together with techniques from an enterprise architecture modeling language. Our claim is that our method will help project managers who want to establish early control of their projects and will also give managers confidence in the scope of their project. In particular we propose the inclusion of assumptions as first class entities in the ArchiMate enterprise architecture modeling language and an extension of the ArchiMate Motivation Model principle to allow radical as well as normative analyses. We demonstrate the usefulness of this method using a simple university library system as an example.
Resumo:
We propose a unified data modeling approach that is equally applicable to supervised regression and classification applications, as well as to unsupervised probability density function estimation. A particle swarm optimization (PSO) aided orthogonal forward regression (OFR) algorithm based on leave-one-out (LOO) criteria is developed to construct parsimonious radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines the center vector and diagonal covariance matrix of one RBF node by minimizing the LOO statistics. For regression applications, the LOO criterion is chosen to be the LOO mean square error, while the LOO misclassification rate is adopted in two-class classification applications. By adopting the Parzen window estimate as the desired response, the unsupervised density estimation problem is transformed into a constrained regression problem. This PSO aided OFR algorithm for tunable-node RBF networks is capable of constructing very parsimonious RBF models that generalize well, and our analysis and experimental results demonstrate that the algorithm is computationally even simpler than the efficient regularization assisted orthogonal least square algorithm based on LOO criteria for selecting fixed-node RBF models. Another significant advantage of the proposed learning procedure is that it does not have learning hyperparameters that have to be tuned using costly cross validation. The effectiveness of the proposed PSO aided OFR construction procedure is illustrated using several examples taken from regression and classification, as well as density estimation applications.
Resumo:
Infants' responses in speech sound discrimination tasks can be nonmonotonic over time. Stager and Werker (1997) reported such data in a bimodal habituation task. In this task, 8-month-old infants were capable of discriminations that involved minimal contrast pairs, whereas 14-month-old infants were not. It was argued that the older infants' attenuated performance was linked to their processing of the stimuli for meaning. The authors suggested that these data are diagnostic of a qualitative shift in infant cognition. We describe an associative connectionist model showing a similar decrement in discrimination without any qualitative shift in processing. The model suggests that responses to phonemic contrasts may be a nonmonotonic function of experience with language. The implications of this idea are discussed. The model also provides a formal framework for studying habituation-dishabituation behaviors in infancy.
Resumo:
The search for ever deeper relationships among the World’s languages is bedeviled by the fact that most words evolve too rapidly to preserve evidence of their ancestry beyond 5,000 to 9,000 y. On the other hand, quantitative modeling indicates that some “ultraconserved” words exist that might be used to find evidence for deep linguistic relationships beyond that time barrier. Here we use a statistical model, which takes into account the frequency with which words are used in common everyday speech, to predict the existence of a set of such highly conserved words among seven language families of Eurasia postulated to form a linguistic superfamily that evolved from a common ancestor around 15,000 y ago. We derive a dated phylogenetic tree of this proposed superfamily with a time-depth of ∼14,450 y, implying that some frequently used words have been retained in related forms since the end of the last ice age. Words used more than once per 1,000 in everyday speech were 7- to 10-times more likely to show deep ancestry on this tree. Our results suggest a remarkable fidelity in the transmission of some words and give theoretical justification to the search for features of language that might be preserved across wide spans of time and geography.
Resumo:
This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.