27 resultados para Ultra-thin
em CentAUR: Central Archive University of Reading - UK
Resumo:
Templated sol-gel encapsulation of surfactant-stabilised micelles containing metal precursor(s) with ultra-thin porous silica coating allows solvent extraction of organic based stabiliser from the composites in colloidal state hence a new method of preparing supported alloy catalysts using the inorganic silica-stabilised nano-sized, homogenously mixed, silver - platinum (Ag-Pt) colloidal particles is reported.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.
Resumo:
In our seminal work, we reported how the biomaterial Parylene-C has the unique ability to coerce neurons and glial cells to migrate to and then grow in straight lines along serum coated rectangular parylene-C structures mounted on an oxidised silicon substrate. In this brief communication, we report how astrocyte cell bodies, from the dissociated postnatal rat hippocampus, can now to be successfully localised on an ultra-thin 13nm layer of parylene-C mounted on oxidised silicon (Figure 1). What is extremely interesting about this finding is that the astrocyte processes extended mainly in horizontal and vertical directions from the cell body thus creating a regular lattice network of individual cells. In addition, they comfortably extended a 50μm gap (equivalent to ~ 10 cell body diameters) to connect to adjacent astrocytes on neighbouring Parylene-C structures. This was found to occur repeatedly on circular geometries of 20μm diameter. In comparison to our previous work [1], we have decreased the thickness of the parylene-C structures by a factor of 10, to allow such technology to be able to be utilised for passive electrode design that requires extremely thin structures such as these. Thus, being able to culture astrocytes in regular lattice networks will pave the way for precise monitoring and stimulation of such ensembles via multi-electrode arrays, allowing a closer insight into their dynamic behaviour and their network properties.
Resumo:
We consider the small-time behavior of interfaces of zero contact angle solutions to the thin-film equation. For a certain class of initial data, through asymptotic analyses, we deduce a wide variety of behavior for the free boundary point. These are supported by extensive numerical simulations. © 2007 Society for Industrial and Applied Mathematics
Resumo:
Excavations on the multi-period settlement at Old Scatness, Shetland have uncovered a number of Iron Age structures with compacted, floor-like layers. Thin section analysis was undertaken in order to investigate and compare the characteristics of these layers. The investigation also draws on earlier analyses of the Iron Age agricultural soil around the settlement and the midden deposits that accumulated within the settlement, to create a 'joined-up' analysis which considers the way material from the settlement was used and then recycled as fertiliser for the fields. Peat was collected from the nearby uplands and was used for fuel and possibly also for flooring. It is suggested that organic-rich floors from the structures were periodically removed and the material was spread onto the fields as fertilisers. More organic-rich material may have been used selectively for fertiliser, while the less organic peat ash was allowed to accumulate in middens. Several of the structures may have functioned as byres, which suggests a prehistoric plaggen system.
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.
Resumo:
We investigate the ability of an applied electric field to convert the morphology of a diblock-copolymer thin film from a monolayer of spherical domains embedded in the matrix to cylindrical domains that penetrate through the matrix. As expected, the applied field increases the relative stability of cylindrical domains, while simultaneously reducing the energy barrier that impedes the transition to cylinders. The effectiveness of the field is enhanced by a large dielectric contrast between the two block-copolymer components, particularly when the low-dielectric contrast component forms the matrix. Furthermore, the energy barrier is minimized by selecting sphere-forming diblock copolymers that are as compositionally symmetric as possible. Our calculations, which are the most quantitatively reliable to date, are performed using a numerically precise spectral algorithm based on self-consistent-field theory supplemented with an exact treatment for linear dielectric materials.
Resumo:
We investigate thin films of cylinder-forming diblock copolymer confined between electrically charged parallel plates, using self-consistent-field theory ( SCFT) combined with an exact treatment for linear dielectric materials. Our study focuses on the competition between the surface interactions, which tend to orient cylinder domains parallel to the plates, and the electric field, which favors a perpendicular orientation. The effect of the electric field on the relative stability of the competing morphologies is demonstrated with equilibrium phase diagrams, calculated with the aid of a weak-field approximation. As hoped, modest electric fields are shown to have a significant stabilizing effect on perpendicular cylinders, particularly for thicker films. Our improved SCFT-based treatment removes most of the approximations implemented by previous approaches, thereby managing to resolve outstanding qualitative inconsistencies among different approximation schemes.
Resumo:
Seeds of carrot, groundnut, lettuce, oilseed rape and onion were stored hermetically in laminated aluminium foil packets in four environments (dry or ultra-dry moisture contents combined factorially with temperatures of 20 degrees C or -20 degrees C), replicated at several sites. After ten years' hermetic storage, seed moisture content, equilibrium relative humidity, viability (assessed by ability to germinate normally in standard germination tests) and vigour were determined. After a decade, the change in seed moisture content of samples stored at -20 degrees C was small or nil. Except for groundnut and lettuce (where loss in viability was about 8 and 3%, respectively), no loss in viability was detected after 10 years' hermetic storage at -20 degrees C. In all cases, there was no difference in seed survival between moisture contents at this temperature (P > 0.25). Comparison of seed vigour (root length and rate of germination) also confirmed that drying to moisture contents in equilibrium with 10-12% r.h. had no detrimental effect to longevity when stored at -20 degrees C: the only significant (P < 0.05) differences detected were slightly greater root lengths for ultra-dry storage of four of the six seed lots. Seed moisture content had increased after a decade at 20 degrees C (generally to the level in equilibrium with ambient relative humidity). Hence, sub-zero temperature storage helped maintain the long-term integrity of the laminated aluminium foil packets, as well as that of the seeds within.
Resumo:
Seed of 15 species of Brassicaceae were stored hermetically in a genebank (at -5 degrees C to -10 degrees C with c. 3% moisture content) for 40 years. Samples were withdrawn at intervals for germination tests. Many accessions showed an increase in ability to germinate over this period. due to loss in dormancy. Nevertheless, some dormancy remained after 40 years' storage and was broken by pre-applied gibberellic acid. The poorest seed survival occurred in Hormatophylla spinosa. Even in this accession the ability to germinate declined by only 7% between 1966 and 2006. Comparison of seeds from 1966 stored for 40 years with those collected anew in 2006 from the original sampling sites, where possible, showed few differences, other than a tendency (7 of 9 accessions) for the latter to show greater dormancy. These results for hermetic storage at sub-zero temperatures and low moisture contents confirm that long-term seed storage can provide a successful technology for ex situ plant biodiversity conservation.