45 resultados para Two-domain

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Echovirus type 12 (EV12), an enterovirus of the Picornaviridae family, uses the complement regulator, decay-accelerating factor (DAF, CD55) as a cellular receptor. We have calculated a three-dimensional reconstruction of EV12 bound to a fragment of DAF, consisting of short consensus repeat domains 3 and 4, from cryo-negative stain electron microscopy data (EMD #1057). This shows that, as for an earlier reconstruction of the related echovirus type 7 bound to DAF, attachment is not within the viral canyon but occurs close to the two-fold symmetry axes. Despite this general similarity, our reconstruction reveals a receptor interaction that is quite different from that observed for EV7. Fitting of the crystallographic co-ordinates for DAF34 and EV11 into the reconstruction shows a close agreement between the crystal structure of the receptor fragment and the density for the virus-bound receptor, allowing unambiguous positioning of the receptor with respect to the virion (PDB #1UPN). Our finding that the mode of virus-receptor interaction in EV12 is distinct from that seen for EV7 raises interesting questions regarding the evolution and biological significance of the DAF-binding phenotype in these viruses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonstructural protein 3 of the severe acute respiratory syndrome (SARS) coronavirus includes a "SARS-unique domain" (SUD) consisting of three globular domains separated by short linker peptide segments. This work reports NMR structure determinations of the C-terminal domain (SUD-C) and a two-domain construct (SUD-MC) containing the middle domain (SUD-M) and the C-terminal domain, and NMR data on the conformational states of the N-terminal domain (SUD-N) and the SUD-NM two-domain construct. Both SUD-N and SUD-NM are monomeric and globular in solution; in SUD-NM, there is high mobility in the two-residue interdomain linking sequence, with no preferred relative orientation of the two domains. SUD-C adopts a frataxin like fold and has structural similarity to DNA-binding domains of DNA-modifying enzymes. The structures of both SUD-M (previously determined) and SUD-C (from the present study) are maintained in SUD-MC, where the two domains are flexibly linked. Gel-shift experiments showed that both SUD-C and SUD-MC bind to single-stranded RNA and recognize purine bases more strongly than pyrimidine bases, whereby SUD-MC binds to a more restricted set of purine-containing RNA sequences than SUD-M. NMR chemical shift perturbation experiments with observations of (15)N-labeled proteins further resulted in delineation of RNA binding sites (i.e., in SUD-M, a positively charged surface area with a pronounced cavity, and in SUD-C, several residues of an anti-parallel beta-sheet). Overall, the present data provide evidence for molecular mechanisms involving the concerted actions of SUD-M and SUD-C, which result in specific RNA binding that might be unique to the SUD and, thus, to the SARS coronavirus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently described cupin superfamily of proteins includes the germin and germinlike proteins, of which the cereal oxalate oxidase is the best characterized. This superfamily also includes seed storage proteins, in addition to several microbial enzymes and proteins with unknown function. All these proteins are characterized by the conservation of two central motifs, usually containing two or three histidine residues presumed to be involved with metal binding in the catalytic active site. The present study on the coding regions of Synechocystis PCC6803 identifies a previously unknown group of 12 related cupins, each containing the characteristic two-motif signature. This group comprises 11 single-domain proteins, ranging in length from 104 to 289 residues, and includes two phosphomannose isomerases and two epimerases involved in cell wall synthesis, a member of the pirin group of nuclear proteins, a possible transcriptional regulator, and a close relative-of a cytochrome c551 from Rhodococcus. Additionally, there is a duplicated, two-domain protein that has close similarity to an oxalate decarboxylase from the fungus Collybia velutipes and that is a putative progenitor of the storage proteins of land plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cupin superfamily of proteins, named on the basis of a conserved β-barrel fold (‘cupa’ is the Latin term for a small barrel), was originally discovered using a conserved motif found within germin and germin-like proteins from higher plants. Previous analysis of cupins had identified some 18 different functional classes that range from single-domain bacterial enzymes such as isomerases and epimerases involved in the modification of cell wall carbohydrates, through to two-domain bicupins such as the desiccation-tolerant seed storage globulins, and multidomain transcription factors including one linked to the nodulation response in legumes. Recent advances in comparative genomics, and the resolution of many more 3-D structures have now revealed that the largest subset of the cupin superfamily is the 2-oxyglutarate-Fe2+ dependent dioxygenases. The substrates for this subclass of enzyme are many and varied and in total amount to probably 50–100 different biochemical reactions, including several involved in plant growth and development. Although the majority of enzymatic cupins contain iron as an active site metal, other members contain either copper, zinc, cobalt, nickel or manganese ions as a cofactor, with each cofactor allowing a different type of chemistry to occur within the conserved tertiary structure. This review discusses the range of structures and functions found in this most diverse of superfamilies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to apply and compare two time-domain analysis procedures in the determination of oxygen uptake (VO2) kinetics in response to a pseudorandom binary sequence (PRBS) exercise test. PRBS exercise tests have typically been analysed in the frequency domain. However, the complex interpretation of frequency responses may have limited the application of this procedure in both sporting and clinical contexts, where a single time measurement would facilitate subject comparison. The relative potential of both a mean response time (MRT) and a peak cross-correlation time (PCCT) was investigated. This study was divided into two parts: a test-retest reliability study (part A), in which 10 healthy male subjects completed two identical PRBS exercise tests, and a comparison of the VO2 kinetics of 12 elite endurance runners (ER) and 12 elite sprinters (SR; part B). In part A, 95% limits of agreement were calculated for comparison between MRT and PCCT. The results of part A showed no significant difference between test and retest as assessed by MRT [mean (SD) 42.2 (4.2) s and 43.8 (6.9) s] or by PCCT [21.8 (3.7) s and 22.7 (4.5) s]. Measurement error (%) was lower for MRT in comparison with PCCT (16% and 25%, respectively). In part B of the study, the VO2 kinetics of ER were significantly faster than those of SR, as assessed by MRT [33.4 (3.4) s and 39.9 (7.1) s, respectively; P<0.01] and PCCT [20.9 (3.8) s and 24.8 (4.5) s; P < 0.05]. It is possible that either analysis procedure could provide a single test measurement Of VO2 kinetics; however, the greater reliability of the MRT data suggests that this method has more potential for development in the assessment Of VO2 kinetics by PRBS exercise testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We solve a Dirichlet boundary value problem for the Klein–Gordon equation posed in a time-dependent domain. Our approach is based on a general transform method for solving boundary value problems for linear and integrable nonlinear PDE in two variables. Our results consist of the inversion formula for a generalized Fourier transform, and of the application of this generalized transform to the solution of the boundary value problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low molecular weight glutenin subunits (LMW-GS) are major components of the glutenin polymers which determine the elastomeric properties of wheat (Triticum aestivum L.) gluten and dough. They comprise a complex mixture of components and have proved to be difficult to purify for detailed characterisation. The mature LMW subunit proteins comprise two structural domains, with one domain consisting of repeated sequences based on short peptide motifs. DNA sequences encoding this domain and a whole subunit were expressed in Escherichia coli and the recombinant proteins purified. Detailed comparisons by spectroscopy (CD, FT-IR) and dynamic light scattering indicated that the repetitive and non-repetitive domains of the proteins formed different structures with the former having an extended conformation with an equilibrium between poly-L-proline II-like structure and type II’ b-turns, and the latter a more compact globular structure rich in a-helix. Although the structures of these two domains appear to form independently, dynamic light scattering of the whole subunit dissolved in trifluoroethanol(TFE) suggested that they interact, leading to a more compact conformation. These observations may have relevance to the role of the LMW-GS in gluten structure and functionality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If the fundamental precepts of Farming Systems Research were to be taken literally then it would imply that for each farm 'unique' solutions should be sought. This is an unrealistic expectation, but it has led to the idea of a recommendation domain, implying creating a taxonomy of farms, in order to increase the general applicability of recommendations. Mathematical programming models are an established means of generating recommended solutions, but for such models to be effective they have to be constructed for 'truly' typical or representative situations. The multi-variate statistical techniques provide a means of creating the required typologies, particularly when an exhaustive database is available. This paper illustrates the application of this methodology in two different studies that shared the common purpose of identifying types of farming systems in their respective study areas. The issues related with the use of factor and cluster analyses for farm typification prior to building representative mathematical programming models for Chile and Pakistan are highlighted. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a central segment of the previously annotated severe acute respiratory syndrome (SARS)-unique domain (SUD-M, for "middle of the SARS-unique domain") in SARS coronavirus (SARS-CoV) nonstructural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3 residues 528 to 648, and there is a flexibly extended N-terminal tail with the residues 513 to 527 and a C-terminal flexible tail of residues 649 to 651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527 to 651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly(A) and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In a further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1 ''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows three-dimensional structure homology with several helicases and nucleoside triphosphate-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [ nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chaperone/usher pathway controls assembly of fibres of adhesive organelles of Gram-negative bacteria. The final steps of fibre assembly and fibre translocation to the cell surface are co-ordinated by the outer membrane proteins, ushers. Ushers consist of several soluble periplasmic domains and a single transmembrane beta-barrel. Here we report isolation and structural/functional characterization of a novel middle domain of the Caf1A usher from Yersinia pestis. The isolated UMD (usher middle domain) is a highly soluble monomeric protein capable of autonomous folding. A 2.8 angstrom (1 angstrom = 0.1 nm) resolution crystal structure of UMD revealed that this domain has an immunoglobulin-like fold similar to that of donor-strand-complemented Caf1 fibre subunit. Moreover, these proteins displayed significant structural similarity. Although UMD is in the middle of the predicted amphipathic beta-barrel of Caf1A, the usher still assembled in the membrane in the absence of this domain. UMD did not bind Caf1M-Caf1 complexes, but its presence was shown to be essential for Caf1 fibre secretion. The study suggests that UMD may play the role of a subunit-substituting protein (dummy subunit), plugging or priming secretion through the channel in the Caf1A usher. Comparison of isolated UMD with the recent strcture of the corresponding domain of PapC usher revealed high similarity of the core structures, suggesting a universal structural adaptation of FGL (F(1)G(1) long) and FGS (F(1)G(1) short) chaperone/usher pathways for the secretion of different types of fibres. The functional role of two topologically different states of this plug domain suggested by structural and biochemical results is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NMR structure of a central segment of the previously annotated "SARS-unique domain" (SUD-M; "middle of the SARS-unique domain") in the SARS coronavirus (SARS-CoV) non-structural protein 3 (nsp3) has been determined. SUD-M(513-651) exhibits a macrodomain fold containing the nsp3-residues 528-648, and there is a flexibly extended N-terminal tail with the residues 513-527 and a C-terminal flexible tail of residues 649-651. As a follow-up to this initial result, we also solved the structure of a construct representing only the globular domain of residues 527-651 [SUD-M(527-651)]. NMR chemical shift perturbation experiments showed that SUD-M(527-651) binds single-stranded poly-A and identified the contact area with this RNA on the protein surface, and electrophoretic mobility shift assays then confirmed that SUD-M has higher affinity for purine bases than for pyrimidine bases. In further search for clues to the function, we found that SUD-M(527-651) has the closest three-dimensional structure homology with another domain of nsp3, the ADP-ribose-1''-phosphatase nsp3b, although the two proteins share only 5% sequence identity in the homologous sequence regions. SUD-M(527-651) also shows 3D structure homology with several helicases and NTP-binding proteins, but it does not contain the motifs of catalytic residues found in these structural homologues. The combined results from NMR screening of potential substrates and the structure-based homology studies now form a basis for more focused investigations on the role of the SARS-unique domain in viral infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The outer domain (OD) of human immunodeficiency virus (HIV)-1 gp120 represents an attractive, if difficult, target for a beneficial immune response to HIV infection. Unlike the entire gp120, the OD is structurally stable and contains the surfaces that interact with both the primary and secondary cellular receptors. The primary strain-specific neutralizing target, the V3 loop, lies within the OD, as do epitopes for two cross-reactive neutralizing monoclonal antibodies (mAbs), b12 and 2G12, and the contact sites for a number of inhibitory lectins. The OD is poorly immunogenic, at least in the context of complete gp120, but purposeful OD immunization can lead to a substantial antibody response. Here, we map the antibody generated following immunization with a clade C OD. In contrast to published data for the clade B OD, the majority of the polyclonal response to the complete clade C OD is to the V3 loop; deletion of the loop substantially reduces immunogenicity. When the loop sequence was substituted for the epitope for 2F5, a well-characterized human cross-neutralizing mAb, a polyclonal response to the epitope was generated. A panel of mAbs against the clade C OD identified two mAbs that reacted with the loop and were neutralizing for clade C but not B isolates. Other mAbs recognized both linear and conformational epitopes in the OD. We conclude that, as for complete gp120, V3 immunodominance is a property of OD immunogens, that the responses can be neutralizing and that it could be exploited for the presentation of other epitopes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The hepatitis C virus (HCV) non-structural 5A protein (NS5A) contains a highly conserved C-terminal polyproline motif with the consensus sequence Pro-X-X- Pro-X-Arg that is able to interact with the Src-homology 3 (SH3) domains of a variety of cellular proteins. Results: To understand this interaction in more detail we have expressed two N-terminally truncated forms of NS5A in E. coli and examined their interactions with the SH3 domain of the Src-family tyrosine kinase, Fyn. Surface plasmon resonance analysis revealed that NS5A binds to the Fyn SH3 domain with what can be considered a high affinity SH3 domain-ligand interaction (629 nM), and this binding did not require the presence of domain I of NS5A (amino acid residues 32-250). Mutagenic analysis of the Fyn SH3 domain demonstrated the requirement for an acidic cluster at the C-terminus of the RT-Src loop of the SH3 domain, as well as several highly conserved residues previously shown to participate in SH3 domain peptide binding. Conclusion: We conclude that the NS5A: Fyn SH3 domain interaction occurs via a canonical SH3 domain binding site and the high affinity of the interaction suggests that NS5A would be able to compete with cognate Fyn ligands within the infected cell.