3 resultados para Turdus amaurochalinus
em CentAUR: Central Archive University of Reading - UK
Resumo:
1. The feeding rates of many predators and parasitoids exhibit type II functional responses, with a decelerating rate of increase to reach an asymptotic value as the density of their prey or hosts increases. Holling's disc equation describes such relationships and predicts that the asymptotic feeding rate at high prey densities is set by handling time, while the rate at which feeding rate increases with increased prey density is determined by searching efficiency. Searching efficiency and handling time are also parameters in other models which describe the functional response. Models which incorporate functional responses in order to make predictions of the effects of food shortage thus rely upon a clear understanding and accurate quantification of searching efficiency and handling time. 2. Blackbird Turdus merula exhibit a type II functional response and use pause-travel foraging, a foraging technique in which animals search for prey while stationary and then move to capture prey. Pause-travel foraging allows accurate direct measurement of feeding rate and both searching efficiency and handling time. We use Blackbirds as a model species to: (i) compare observed measures of both searching efficiency and handling time with those estimated by statistically fitting the disc equation to the observed functional response; and (ii) investigate alternative measures of searching efficiency derived by the established method where search area is assumed to be circular and a new method that we propose where it is not. 3. We find that the disc equation can adequately explain the functional response of blackbirds feeding on artificial prey. However, this depends critically upon how searching efficiency is measured. Two variations on the previous method of measuring search area (a component of searching efficiency) overestimated searching efficiency, and hence predicted feeding rates higher than those observed. Two variations of our alternative approach produced lower estimates of searching efficiency, closer to that estimated by fitting the disc equation, and hence more accurately predicted feeding rate. Our study shows the limitations of the previous method of measuring searching efficiency, and describes a new method for measuring searching efficiency more accurately.
Resumo:
Passerines are especially vulnerable to predation at the pre-independence stage. Although the role of nest success in British farmland passerine declines is contentious, improvement in nest success through sympathetic management could play a role in their reversal. Because habitat is known to interact with predation, management options for mitigation will need to consider effects of nest predation. We present results from an observational study of a population of Common Blackbird Turdus merula on a farm which has experienced a range of agri-environment and game-management options, including a period with nest predator control, as a case study to address some of these issues. We used an information theoretic model comparison procedure to look for evidence of interactions between habitat and nest predation, and then asked whether habitat management and nest predator abundances could explain population trends at the site through their effects on nest success. Interactions were detected between measures of predator abundance and habitat variables, and these varied with nest stage - habitat within the vicinity of the nest appeared to be important at the egg stage, and nest-placement characteristics were important at the nestling stage. Although predator control appeared to have a positive influence on Blackbird breeding population size, the non-experimental set-up meant we could not eliminate other potential explanations. Variation in breeding population size did not appear to be influenced by variation in nest success alone. Our study demonstrates that observational data can only go so far in detection of such effects, and we discuss how it might be taken further. Agri-environment and game-management techniques are likely to influence nest predation pressure on farmland passerines, but the patterns, mechanisms and importance to population processes remain not wholly understood.
Resumo:
Passerines are especially vulnerable to predation at the pre-independence stage. Although the role of nest success in British farmland passerine declines is contentious, improvement in nest success through sympathetic management could play a role in their reversal. Because habitat is known to interact with predation, management options for mitigation will need to consider effects of nest predation. We present results from an observational study of a population of Common Blackbird Turdus merula on a farm which has experienced a range of agri-environment and game-management options, including a period with nest predator control, as a case study to address some of these issues. We used an information theoretic model comparison procedure to look for evidence of interactions between habitat and nest predation, and then asked whether habitat management and nest predator abundances could explain population trends at the site through their effects on nest success. Interactions were detected between measures of predator abundance and habitat variables, and these varied with nest stage - habitat within the vicinity of the nest appeared to be important at the egg stage, and nest-placement characteristics were important at the nestling stage. Although predator control appeared to have a positive influence on Blackbird breeding population size, the non-experimental set-up meant we could not eliminate other potential explanations. Variation in breeding population size did not appear to be influenced by variation in nest success alone. Our study demonstrates that observational data can only go so far in detection of such effects, and we discuss how it might be taken further. Agri-environment and game-management techniques are likely to influence nest predation pressure on farmland passerines, but the patterns, mechanisms and importance to population processes remain not wholly understood.