19 resultados para Truncated robust multivariate outlier detection
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents a video surveillance framework that robustly and efficiently detects abandoned objects in surveillance scenes. The framework is based on a novel threat assessment algorithm which combines the concept of ownership with automatic understanding of social relations in order to infer abandonment of objects. Implementation is achieved through development of a logic-based inference engine based on Prolog. Threat detection performance is conducted by testing against a range of datasets describing realistic situations and demonstrates a reduction in the number of false alarms generated. The proposed system represents the approach employed in the EU SUBITO project (Surveillance of Unattended Baggage and the Identification and Tracking of the Owner).
Resumo:
Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
Heterogeneity in lifetime data may be modelled by multiplying an individual's hazard by an unobserved frailty. We test for the presence of frailty of this kind in univariate and bivariate data with Weibull distributed lifetimes, using statistics based on the ordered Cox-Snell residuals from the null model of no frailty. The form of the statistics is suggested by outlier testing in the gamma distribution. We find through simulation that the sum of the k largest or k smallest order statistics, for suitably chosen k , provides a powerful test when the frailty distribution is assumed to be gamma or positive stable, respectively. We provide recommended values of k for sample sizes up to 100 and simple formulae for estimated critical values for tests at the 5% level.
Resumo:
In this paper we consider the estimation of population size from onesource capture–recapture data, that is, a list in which individuals can potentially be found repeatedly and where the question is how many individuals are missed by the list. As a typical example, we provide data from a drug user study in Bangkok from 2001 where the list consists of drug users who repeatedly contact treatment institutions. Drug users with 1, 2, 3, . . . contacts occur, but drug users with zero contacts are not present, requiring the size of this group to be estimated. Statistically, these data can be considered as stemming from a zero-truncated count distribution.We revisit an estimator for the population size suggested by Zelterman that is known to be robust under potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a locally truncated Poisson likelihood which is equivalent to a binomial likelihood. This result allows the extension of the Zelterman estimator by means of logistic regression to include observed heterogeneity in the form of covariates. We also review an estimator proposed by Chao and explain why we are not able to obtain similar results for this estimator. The Zelterman estimator is applied in two case studies, the first a drug user study from Bangkok, the second an illegal immigrant study in the Netherlands. Our results suggest the new estimator should be used, in particular, if substantial unobserved heterogeneity is present.
Resumo:
This paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.
Resumo:
This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.
Resumo:
We have discovered a novel approach of intrusion detection system using an intelligent data classifier based on a self organizing map (SOM). We have surveyed all other unsupervised intrusion detection methods, different alternative SOM based techniques and KDD winner IDS methods. This paper provides a robust designed and implemented intelligent data classifier technique based on a single large size (30x30) self organizing map (SOM) having the capability to detect all types of attacks given in the DARPA Archive 1999 the lowest false positive rate being 0.04 % and higher detection rate being 99.73% tested using full KDD data sets and 89.54% comparable detection rate and 0.18% lowest false positive rate tested using corrected data sets.
Resumo:
Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.
OFDM joint data detection and phase noise cancellation based on minimum mean square prediction error
Resumo:
This paper proposes a new iterative algorithm for orthogonal frequency division multiplexing (OFDM) joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the relatively less studied problem of "overfitting" such that the iterative approach may converge to a trivial solution. Specifically, we apply a hard-decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the PHN, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical Simulations are also given to verify the proposed algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.
Resumo:
Measured process data normally contain inaccuracies because the measurements are obtained using imperfect instruments. As well as random errors one can expect systematic bias caused by miscalibrated instruments or outliers caused by process peaks such as sudden power fluctuations. Data reconciliation is the adjustment of a set of process data based on a model of the process so that the derived estimates conform to natural laws. In this paper, techniques for the detection and identification of both systematic bias and outliers in dynamic process data are presented. A novel technique for the detection and identification of systematic bias is formulated and presented. The problem of detection, identification and elimination of outliers is also treated using a modified version of a previously available clustering technique. These techniques are also combined to provide a global dynamic data reconciliation (DDR) strategy. The algorithms presented are tested in isolation and in combination using dynamic simulations of two continuous stirred tank reactors (CSTR).
Resumo:
The Intergovernmental Panel on Climate Change fourth assessment report, published in 2007 came to a more confident assessment of the causes of global temperature change than previous reports and concluded that ‘it is likely that there has been significant anthropogenic warming over the past 50 years averaged over each continent except Antarctica.’ Since then, warming over Antarctica has also been attributed to human influence, and further evidence has accumulated attributing a much wider range of climate changes to human activities. Such changes are broadly consistent with theoretical understanding, and climate model simulations, of how the planet is expected to respond. This paper reviews this evidence from a regional perspective to reflect a growing interest in understanding the regional effects of climate change, which can differ markedly across the globe. We set out the methodological basis for detection and attribution and discuss the spatial scales on which it is possible to make robust attribution statements. We review the evidence showing significant human-induced changes in regional temperatures, and for the effects of external forcings on changes in the hydrological cycle, the cryosphere, circulation changes, oceanic changes, and changes in extremes. We then discuss future challenges for the science of attribution. To better assess the pace of change, and to understand more about the regional changes to which societies need to adapt, we will need to refine our understanding of the effects of external forcing and internal variability
Resumo:
A change detection paradigm was used to estimate the role of explicit change detection in the generation of the irrelevant spatial stimulus coding underlying the Simon effect. In one condition, no blank was interposed between two successive displays, which produced efficient change detection. In another condition, the presence of a blank frame produced a robust change blindness effect, which is crucially assumed to occur as the consequence of impaired attentional orienting to the change location. The results showed a strong Simon-like effect under conditions of efficient change detection. By contrast, no Simon-like effect was observed under conditions of change blindness, namely when attention shifting towards the change location was hampered. Experiment 2 supported this pattern by showing that a Simon-like effect could be observed when the blank was present, but only when participants detected the change by means of a cue that was informative as to change location. Overall, our findings show that a Simon-like effect can only be observed under conditions of explicit change detection, likely because a shift of attention towards the change location has occurred.
Resumo:
Diaminofluoresceins are widely used probes for detection and intracellular localization of NO formation in cultured/isolated cells and intact tissues. The fluorinated derivative, 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM), has gained increasing popularity in recent years due to its improved NO-sensitivity, pH-stability, and resistance to photo-bleaching compared to the first-generation compound, DAF-2. Detection of NO production by either reagent relies on conversion of the parent compound into a fluorescent triazole, DAF-FM-T and DAF-2-T, respectively. While this reaction is specific for NO and/or reactive nitrosating species, it is also affected by the presence of oxidants/antioxidants. Moreover, the reaction with other molecules can lead to the formation of fluorescent products other than the expected triazole. Thus additional controls and structural confirmation of the reaction products are essential. Using human red blood cells as an exemplary cellular system we here describe robust protocols for the analysis of intracellular DAF-FM-T formation using an array of fluorescence-based methods (laser-scanning fluorescence microscopy, flow cytometry and fluorimetry) and analytical separation techniques (reversed-phase HPLC and LC-MS/MS). When used in combination, these assays afford unequivocal identification of the fluorescent signal as being derived from NO and are applicable to most other cellular systems without or with only minor modifications.
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.