7 resultados para Treponema
em CentAUR: Central Archive University of Reading - UK
Resumo:
Treponema have been implicated recently in the pathogenesis of digital dermatitis (DID) and contagious ovine digital dermatitis (CODD) that are infectious diseases of bovine and ovine foot tissues, respectively. Previous analyses of treponemal 16S rDNA sequences, PCR-amplified directly from DID or CODD lesions, have suggested relatedness of animal Treponema to some human oral Treponema species isolated from periodontal tissues. In this study a range of adhesion and virulence-related properties of three animal Treponema isolates have been compared with representative human oral strains of Treponema denticola and Treponema vincentii. In adhesion assays using biotinylated treponemal cells, T denticola cells bound in consistently higher numbers to fibronectin, laminin, collagen type 1, gelatin, keratin and lactoferrin than did T. vincentii or animal Treponema isolates. However, animal DID strains adhered to fibrinogen at equivalent or greater levels than T denticola. All Treponema strains bound to the amino-terminal heparin l/fibrin I domain of fibronectin. 16S rDNA sequence analyses placed ovine strain UB1090 and bovine strain UB1467 within a cluster that was phylogenetically related to T vincentii, while ovine strain UB1466 appeared more closely related to T denticola. These observations correlated with phenotypic properties. Thus, T denticola ATCC 35405, GM-1, and Treponema UB1466 had similar outer-membrane protein profiles, produced chymotrypsin-like protease (CTLP), trypsin-like protease and high levels of proline iminopeptidase, and co-aggregated with human oral bacteria Porphyromonas gingivalis and Streptococcus crista. Conversely, T vincentii ATCC 35580, D2A-2, and animal strains UB1090 and UB1467 did not express CTLP or trypsin-like protease and did not co-aggregate with P. gingivalis or S. crista. Taken collectively, these results suggest that human oral-related Treponema have broad host specificity and that similar control or preventive strategies might be developed for human and animal Treponema-associated infections.
Resumo:
There is growing evidence that a number of oral Treponema species, in particular Treponema denticola, are associated with the progression of human periodontal disease. The major sheath (or surface) protein (Msp) of T. denticola is implicated in adhesion of bacteria to host cells and tissue proteins and is likely to be an important virulence factor. However, the binding regions of the Msp are not known. We have purified from Escherichia coli recombinant Msp (rMsp) polypeptides corresponding to the following: full-length Msp (rMsp) minus 13 N-terminal amino acid (aa) residues, an amino-terminal fragment (rN-Msp, 189 aa residues), a 57-aa residue segment from the central region (rV-Msp), and a C-terminal fragment (rC-Msp, 272 aa residues). rMsp (530 aa residues) bound to immobilized fibronectin, keratin, laminin, collagen type 1, fibrinogen, hyaluronic acid, and heparin. The N- and V-region polypeptides, but not rC-Msp, also bound to these substrates. Binding of rMsp to fibronectin was targeted to the N-terminal heparin I/fibrin I domain. Antibodies to the N-region or V-region polypeptides, but not antibodies to the rC-Msp fragment, blocked adhesion of T. denticola ATCC 35405 cells to a range of host protein molecules. These results suggest that the N-terminal half of Msp carries epitopes that are surface exposed and that are involved in mediating adhesion. Binding of rMsp onto the cell surface of low-level fibronectin-binding Treponema isolates conferred a 10-fold increase in fibronectin binding. This confirms that Msp functions autonomously as an adhesin and raises the possibility that phenotypic complementation of virulence functions might occur within mixed populations of Treponema species.
Resumo:
The 16S rRNA genes from spirochaetes associated with digital dermatitis of British cattle were amplified by polymerase chain reaction from digital dermatitis lesion biopsies using one universal and one treponeme-specific primer. Two treponemal sequences were identified both of which shared a high degree of homology with the oral pathogen Treponema denticola (98%). Two further 16S rRNA gene sequences were obtained and shared similarity to Bacteroides levii (99%) and Mycoplasma hyopharyngis (98%). Polymerase chain reaction with T. denticola-specific primers amplified a potential virulence gene from digital dermatitis lesions which shared a high degree of homology to the 46-kDa haemolysin gene of T. denticola. The significance of the presence of organisms in digital dermatitis lesions of the bovine foot which are closely related to oral pathogens is discussed.
Resumo:
Specimens taken postmortem from typical lesions of digital dermatitis in two dairy cows were tested by the polymerase chain reaction (PCR) for the presence of a spirochaetal 16S rRNA gene. Seven different assays detected the gene in the samples from both cows. Two of the PCR products were sequenced and a comparison of the nucleotide sequences revealed that the spirochaete belonged to the genus Treponema and was closely related to Treponema denticola. A PCR specific for the detection of the digital dermatitis-associated treponeme was developed.
Resumo:
A study was carried out to determine whether spirochaetes are frequently associated with digital dermatitis in United Kingdom (UK) dairy cattle. Histopathological examination of lesions using a silver stain showed a large number of unidentified spirochaete-like organisms present in digital dermatitis hoof skin tissue in all examined biopsies. Immunocytochemical staining demonstrated that spirochaetes in skin lesions were identified by polyclonal antisera to Borrelia burgdorferi, Treponema denticola and Treponema vincentii (again all biopsies were positively stained), whereas monoclonal antibodies to B. burgdorferi and any Treponema pallidum did not stain any organisms in all biopsies. A PCR of 16S rRNA, previously shown to be specific for a new treponeme, was employed and produced positive results from 82.4% of digital dermatitis tissues. It is concluded that this spirochaete (or related spirochaetes), which is similar to human oral treponemes, is frequently associated with, and may be responsible for, pathological changes in digital dermatitis. (C) 1998 Elsevier Science B.V.
Resumo:
The isolation of spirochetes from severe ovine foot disease has been reported recently by our research group. In this study we describe the preliminary classification of this spirochete based on nucleotide sequence analysis of the PCR-amplified 16S rRNA gene. Phylogenetic analysis of this sequence in comparison with other previously reported 16S rRNA gene sequences showed that the spirochete belonged to the treponemal phylotype Treponema vincentii which has been associated with bovine digital dermatitis and human periodontal disease. Further work is required to define the common virulence determinants of these closely related treponemes in the aetiology of these tissue destructive diseases. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Contagious ovine digital dermatitis (CODD) is a recently recorded, apparently new infection of the ovine hoof, which differs clinically from footrot caused by Dichelobacter nodosus and which fails to respond well to accepted treatment practices for footrot. Despite the welfare implications of such an infection, very little research has been performed on CODD to date and the aetiology remains confused. Suggestions have been made that there is a potential role for treponemes in the pathogenesis of CODD but that D. nodosus is apparently not involved. Six farms were therefore targeted in this study to provide a more in-depth investigation into the bacterial flora of CODD lesions. Dark ground microscopy, culture and PCR techniques were used, concentrating on the presence of D. nodosus and spirochaetes, particularly those of the genus Treponema. The results demonstrated that isolates of D. nodosus were indeed present in a high percentage (74%) of CODD lesions compared with 31% of apparently healthy feet. The isolates were shown to be of similar virulence type to those reported previously in cases of footrot, and the range of serogroups was also found to be similar to footrot, with serogroup H being prevalent. Treponemes were present in 70% of CODD lesions and 38% of apparently healthy feet, supporting a possible association between CODD and treponemes. However, any further progress on the aetiology of CODD and the potential for novel, effective treatment will depend on an improved ability to culture these organisms routinely in the laboratory thereby enabling their complete characterisation. (c) 2005 Elsevier B.V. All rights reserved.