52 resultados para Trapping.

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field studies were carried out on the water and sediment dynamics in the tropical, macro-tidal, Daly Estuary. The estuary is shallow, very-turbid, about 100 km long, and the entrance is funnel-shape. In the wet, high flow season, normal tidal ranges can be suppressed in the estuary, depending on inflow rates, and freshwater becomes dominant up to the mouth. At that time a fraction of the fine sediment load is exported offshore as a bottom-tagging nepheloid layer after the sediment falls out of suspension of the thin, near-surface, river plume. The remaining fraction and the riverine coarse sediment form a large sediment bar 10 km long, up to 6 m in height and extending across the whole width of the channel near the mouth. This bar, as well as shoals in the estuary, partially pond the mid- to upper-estuary. This bar builds up from the deposition of riverine sediment during a wet season with high runoff and can raise mean water level by up to 2 m in the upper estuary in the low flow season. This ponding effect takes about three successive dry years to disappear by the sediment forming the bar being redistributed all over the estuary by tidal pumping of fine and coarse sediment in the dry season, which is the low flow season. The swift reversal of the tidal currents from ebb to flood results in macro-turbulence that lasts about 20 min. Bed load transport is preferentially landward and occurs only for water currents greater than 0.6 m s(-1). This high value of the threshold velocity suggests that the sand may be cemented by the mud. The Daly Estuary thus is a leaky sediment trap with an efficiency varying both seasonally and inter-annually. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selected silicas were modified with the covalently bound ligand 2,6-bis(benzoxazoyl)pyridine (BBOP), equilibrated with copper(II) nitrate, then challenged with toxic vapour containing HCN (8000 mg m(-3) at 80% relative humidity). The modified SBA-15 material (Cu-BBOP-SBA-15) had an improved breakthrough time for HCN (36 min at a flow rate of 30 cm(3) min(-1)) when compared to the other siliceous materials prepared in this study, equating to a hydrogen cyanide capacity of 58 mg g(-1), which is close to a reference activated carbon adsorbent (24 min at 50 cm(3) min(-1)) that can trap 64 mg g(-1). The enhanced performance observed with Cu-BBOP-SBA-15 has been related to the greater accessibility of the functional groups, arising from the ordered nature of the interconnected porous network and large mesopores of 5.5 nm within the material modified with the Cu(II)-BBOP complex. Modified MCM-41 and MCM-48 materials (Cu-BBOP-MCM-41 and Cu-BBOP-MCM-48) were found to have lower hydrogen cyanide capacities (38 and 32 mg g(-1) respectively) than the Cu-BBOP-SBA-15 material owing to the restricted size of the pores (2.2 and <2 nm respectively). The materials with poor nano-structured ordering were found to have low hydrogen cyanide capacities, between 11 and 19 mg g(-1), most likely owing to limited accessibility of the functional groups. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transthyretin (TTR) amyloidosis is a fatal disease for which new therapeutic approaches are urgently needed. We have designed two palindromic ligands, 2,2’-(4,4’-(heptane 1,7-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (mds84) and 2,2’-(4,4’-(undecane-1,11-diylbis(oxy))bis(3,5-dichloro-4,1-phenylene)) bis(azanediyl)dibenzoic acid (4ajm15), that are rapidly bound by native wild-type TTR in whole serum and even more avidly by amyloidogenic TTR variants. One to one stoichiometry, demonstrable in solution and by MS, was confirmed by X-ray crystallographic analysis showing simultaneous occupation of both T4 binding sites in each tetrameric TTR molecule by the pair of ligand head groups. Ligand binding by native TTR was irreversible under physiological conditions, and it stabilized the tetrameric assembly and inhibited amyloidogenic aggregation more potently than other known ligands. These superstabilizers are orally bioavailable and exhibit low inhibitory activity against cyclooxygenase (COX). They offer a promising platform for development of drugs to treat and prevent TTR amyloidosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free radicals in cigarette smoke have been studied using spin trapping EPR techniques. 2R4F reference cigarettes were smoked using 35 ml puff volumes of 2 seconds duration, once every 60 seconds. The particulate phase of the smoke was separated from the gas phase by passing the smoke through a Cambridge filter pad. For both phases, free radicals were measured and identified. A range of spin-traps was employed: PBN, DMPO, DEPMPO, and DPPH-PBN. In the gas-phase, short-lived carbon- and oxygen- centered radicals were identified; the ratios between them changed during the smoking runs. For the first puffs, C-centered radicals predominated while for the later puffs, O-centered radicals were mainly observed. The particulate phase and the ‘tar’ were studied as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we derive novel approximations to trapped waves in a two-dimensional acoustic waveguide whose walls vary slowly along the guide, and at which either Dirichlet (sound-soft) or Neumann (sound-hard) conditions are imposed. The guide contains a single smoothly bulging region of arbitrary amplitude, but is otherwise straight, and the modes are trapped within this localised increase in width. Using a similar approach to that in Rienstra (2003), a WKBJ-type expansion yields an approximate expression for the modes which can be present, which display either propagating or evanescent behaviour; matched asymptotic expansions are then used to derive connection formulae which bridge the gap across the cut-off between propagating and evanescent solutions in a tapering waveguide. A uniform expansion is then determined, and it is shown that appropriate zeros of this expansion correspond to trapped mode wavenumbers; the trapped modes themselves are then approximated by the uniform expansion. Numerical results determined via a standard iterative method are then compared to results of the full linear problem calculated using a spectral method, and the two are shown to be in excellent agreement, even when $\epsilon$, the parameter characterising the slow variations of the guide’s walls, is relatively large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollinators provide a critical ecosystem service by pollinating many wild flowers and crops. It is therefore essential to be able to effectively survey and monitor pollinator communities across a range of habitats, and in particular, sample the often stratified parts of the habitats where insects are found. To date, a wide array of sampling methods have been used to collect insect pollinators, but no single method has been used effectively to sample across habitat types and throughout the spatial structure of habitats. Here we present a method of ‘aerial pan-trapping that allows insect pollinators to be sampled across the vertical strata from the canopy of forests to agro-ecosystems. We surveyed and compared the species richness and abundance of a wide range of insect pollinators in agricultural, secondary regenerating forest and primary forest habitats in Ghana to evaluate the usefulness of this approach. In addition to confirming the efficacy of the method at heights of up to 30 metres and the effects of trap color on catch, we found greatest insect abundance in agricultural land and higher bee abundance and species richness in undisturbed forest compared to secondary forest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from 1D Vlasov drift-kinetic plasma simulations reveal how and where auroral electrons are accelerated along Earth’s geomagnetic field. In the warm plasma sheet, electrons become trapped in shear Alfven waves, preventing immediate wave damping. As waves move to regions with larger vTe=vA, their parallel electric field decreases, and the trapped electrons escape their influence. The resulting electron distribution functions compare favorably with in situ observations, demonstrating for the first time a self-consistent link between Alfven waves and electrons that form aurora.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holm oak (Quercus ilex), a widespread urban street tree in the Mediterranean region, is widely used as biomonitor of persistent atmospheric pollutants, especially particulate-bound metals. By using lab- and field-based experimental approaches, we compared the leaf-level capacity for particles’ capture and retention between Q. ilex and other common Mediterranean urban trees: Quercus cerris, Platanus × hispanica, Tilia cordata and Olea europaea. All applied methods were effective in quantifying particulate capture and retention, although not univocal in ranking species performances. Distinctive morphological features of leaves led to differences in species’ ability to trap and retain particles of different size classes and to accumulate metals after exposure to traffic in an urban street. Overall, P. × hispanica and T. cordata showed the largest capture potential per unit leaf area for most model particles (Na+ and powder particles), and street-level Cu and Pb, while Q. ilex acted intermediately. After wash-off experiments, P. × hispanica leaves had the greatest retention capacity among the tested species and O. europaea the lowest. We concluded that the Platanus planting could be considered in Mediterranean urban environments due to its efficiency in accumulating and retaining airborne particulates; however, with atmospheric pollution being typically higher in winter, the evergreen Q. ilex represents a better year-round choice to mitigate the impact of airborne particulate pollutants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Convectively coupled equatorial waves are fundamental components of the interaction between the physics and dynamics of the tropical atmosphere. A new methodology, which isolates individual equatorial wave modes, has been developed and applied to observational data. The methodology assumes that the horizontal structures given by equatorial wave theory can be used to project upper- and lower-tropospheric data onto equatorial wave modes. The dynamical fields are first separated into eastward- and westward-moving components with a specified domain of frequency–zonal wavenumber. Each of the components for each field is then projected onto the different equatorial modes using the y structures of these modes given by the theory. The latitudinal scale yo of the modes is predetermined by data to fit the equatorial trapping in a suitable latitude belt y = ±Y. The extent to which the different dynamical fields are consistent with one another in their depiction of each equatorial wave structure determines the confidence in the reality of that structure. Comparison of the analyzed modes with the eastward- and westward-moving components in the convection field enables the identification of the dynamical structure and nature of convectively coupled equatorial waves. In a case study, the methodology is applied to two independent data sources, ECMWF Reanalysis and satellite-observed window brightness temperature (Tb) data for the summer of 1992. Various convectively coupled equatorial Kelvin, mixed Rossby–gravity, and Rossby waves have been detected. The results indicate a robust consistency between the two independent data sources. Different vertical structures for different wave modes and a significant Doppler shifting effect of the background zonal winds on wave structures are found and discussed. It is found that in addition to low-level convergence, anomalous fluxes induced by strong equatorial zonal winds associated with equatorial waves are important for inducing equatorial convection. There is evidence that equatorial convection associated with Rossby waves leads to a change in structure involving a horizontal structure similar to that of a Kelvin wave moving westward with it. The vertical structure may also be radically changed. The analysis method should make a very powerful diagnostic tool for investigating convectively coupled equatorial waves and the interaction of equatorial dynamics and physics in the real atmosphere. The results from application of the analysis method for a reanalysis dataset should provide a benchmark against which model studies can be compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuous operation of insect-monitoring radars in the UK has permitted, for the first time, the characterization of various phenomena associated with high-altitude migration of large insects over this part of northern Europe. Previous studies have taken a case-study approach, concentrating on a small number of nights of particular interest. Here, combining data from two radars, and from an extensive suction- and light-trapping network, we have undertaken a more systematic, longer-term study of diel flight periodicity and vertical distribution of macro-insects in the atmosphere. Firstly, we identify general features of insect abundance and stratification, occurring during the 24-hour cycle, which emerge from four years’ aggregated radar data for the summer months in southern Britain. These features include mass emigrations at dusk and to a lesser extent at dawn, and daytime concentrations associated with thermal convection. We then focus our attention on the well-defined layers of large nocturnal migrants that form in the early evening, usually at heights of 200–500 m above ground. We present evidence from both radar and trap data that these nocturnal layers are composed mainly of noctuid moths, with species such as Noctua pronuba, Autographa gamma, Agrotis exclamationis, A. segetum, Xestia c-nigrum and Phlogophora meticulosa predominating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect(1), although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate(2). Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds(3). Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive(1,2,4). Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model(5,6) for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The length and time scales accessible to optical tweezers make them an ideal tool for the examination of colloidal systems. Embedded high-refractive-index tracer particles in an index-matched hard sphere suspension provide 'handles' within the system to investigate the mechanical behaviour. Passive observations of the motion of a single probe particle give information about the linear response behaviour of the system, which can be linked to the macroscopic frequency-dependent viscous and elastic moduli of the suspension. Separate 'dragging' experiments allow observation of a sample's nonlinear response to an applied stress on a particle-by particle basis. Optical force measurements have given new data about the dynamics of phase transitions and particle interactions; an example in this study is the transition from liquid-like to solid-like behaviour, and the emergence of a yield stress and other effects attributable to nearest-neighbour caging effects. The forces needed to break such cages and the frequency of these cage breaking events are investigated in detail for systems close to the glass transition.