22 resultados para Transyugular intrahepatic postosystemic shunt (TIPS)
em CentAUR: Central Archive University of Reading - UK
Resumo:
Listeria monocytogenes, the causative agent of human listeriosis, is known for its ability to withstand severe environmental stresses. The glutamate decarboxylase (GAD) system is one of the principal systems utilized by the bacterium to cope with acid stress, a reaction that produces γ-aminobutyrate (GABA) from glutamate. Recently, we have shown that GABA can accumulate intracellularly under acidic conditions, even under conditions where no extracellular glutamate-GABA exchange is detectable. The GABA shunt, a pathway that metabolizes GABA to succinate, has been described for several other bacterial genera, and the present study sought to determine whether L. monocytogenes has this metabolic capacity, which, if present, could provide a possible route for succinate biosynthesis in L. monocytogenes. Using crude protein extracts from L. monocytogenes EGD-e, we show that this strain exhibits activity for the two main enzyme reactions in the GABA shunt, GABA aminotransferase (GABA-AT) and succinic semialdehyde dehydrogenase (SSDH). Two genes were identified as candidates for encoding these enzyme activities, argD (GABA-AT) and lmo0913 (SSDH). Crude protein extracts prepared from a mutant lacking a functional argD gene significantly reduced GABA-AT activity, while an lmo0913 mutant lost all detectable SSDH activity. The deletion of lmo0913 increased the acid tolerance of EGD-e and showed an increased accumulation of intracellular GABA, suggesting that this pathway plays a significant role in the survival of this pathogen under acidic conditions. This is the first report of such a pathway in the genus Listeria, which highlights an important link between metabolism and acid tolerance and also presents a possible compensatory pathway to partially overcome the incomplete tricarboxylic acid cycle of Listeria.
Resumo:
Throughout the central nervous system a dominant form of inhibition of neurotransmitter release from presynaptic terminals is mediated by G-protein-coupled receptors (GPCRs). Neurotransmitter release is typically induced by action potentials (APs), but can also occur spontaneously. Presynaptic inhibition by GPCRs has been associated with modulation of voltage-dependent ion channels. However, electrophysiological recordings of spontaneous, AP-independent (so-called ‘miniature’) postsynaptic events reveal an additional, important form of GPCR-mediated presynaptic inhibition, distinct from effects on ionic conductances and consistent with a direct action on the vesicle release machinery. Recent studies suggest that such miniature events might be of physiological relevance not only in signalling but also in development. In the cerebellum, neurotransmitter release onto Purkinje cells occurs by AP-dependent and AP-independent pathways. Here, I focus on inhibitory synapses between interneurons and Purkinje cells, which are subject to strong, identifiable regulation by endogenous GPCR agonists, to consider mechanisms of GPCR-mediated presynaptic inhibition.
Resumo:
The translocation of C and N in a maize-Striga hermonthica association was investigated at three rates of nitrogen application in a glasshouse experiment. The objectives were to measure the transfer of C and N from maize to S. hermonthica and to determine whether the amount of N in the growing medium affected the proportions of C and N transferred. Young plants of maize were labelled in a (CO2)-C-13 atmosphere and leaf tips were immersed in ((NH4)-N-15)(2)SO4 Solution. The Striga x N interaction was not significant for any of the responses measured. Total dry matter for infected maize was significantly smaller than for uninfected maize from 43 to 99 days after planting, but N application increased total dry matter at all sampling times. Infected maize plants partitioned 39-45 % of their total dry matter to the roots compared with 28-31 % for Uninfected maize. Dry matter of S. hermonthica was not affected by the rate of N applied. S. hermonthica derived 100 % of its carbon from maize before emergence, decreasing to 22-59 % thereafter; the corresponding values for nitrogen were up to 59 % pre-emergence and Lip to 100 % after emergence. The relative proportions of nitrogen depleted from the host (up to 10 %) were greater than those of carbon (maximum 1.2 %) at all times of sampling after emergence of the parasite. The results show that the parasite was more dependent on the host for nitrogen than for carbon.
Resumo:
The translocation of C and N in a maize-Striga hermonthica association was investigated at three rates of nitrogen application in a glasshouse experiment. The objectives were to measure the transfer of C and N from maize to S. hermonthica and to determine whether the amount of N in the growing medium affected the proportions of C and N transferred. Young plants of maize were labelled in a (CO2)-C-13 atmosphere and leaf tips were immersed in ((NH4)-N-15)(2)SO4 Solution. The Striga x N interaction was not significant for any of the responses measured. Total dry matter for infected maize was significantly smaller than for uninfected maize from 43 to 99 days after planting, but N application increased total dry matter at all sampling times. Infected maize plants partitioned 39-45 % of their total dry matter to the roots compared with 28-31 % for Uninfected maize. Dry matter of S. hermonthica was not affected by the rate of N applied. S. hermonthica derived 100 % of its carbon from maize before emergence, decreasing to 22-59 % thereafter; the corresponding values for nitrogen were up to 59 % pre-emergence and Lip to 100 % after emergence. The relative proportions of nitrogen depleted from the host (up to 10 %) were greater than those of carbon (maximum 1.2 %) at all times of sampling after emergence of the parasite. The results show that the parasite was more dependent on the host for nitrogen than for carbon.
Resumo:
The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Wearied plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls. (C) 2003 Annals of Botany Company.
Resumo:
Despite advances in tissue culture techniques, propagation by leafy, softwood cuttings is the preferred, practical system for vegetative reproduction of many tree and shrub species. Species are frequently defined as 'difficult'- or 'easy-to-root' when propagated by conventional cuttings. Speed of rooting is often linked with ease of propagation, and slow-to-root species may be 'difficult' precisely because tissues deteriorate prior to the formation of adventitious roots. Even when roots form, limited development of these may impair the establishment of a cutting. In this study we used softwood cuttings of cashew (Anacardium occidentale), a species considered as 'difficult-to-root'. We aimed to test the hypothesis that speed, and extent of early rooting, is critical in determining success with this species; and that the potential to form adventitious roots will decrease with time in the propagation environment. Using two genotypes, initial rooting rates were examined in the presence or absence of exogenous auxin. In cuttings that formed adventitious roots, either entire roots or root tips were removed, to determine if further root formation/development was feasible. To investigate if subsequent root responses were linked to phytohormone action, a number of cuttings were also treated with either exogenous auxin (indole-3-butyric acid-IBA) or cytokinin (zeatin). Despite the reputation of Anacardium as being 'difficult-to-root', we found high rooting rates in two genotypes (AC 10 and CCP 1001). Removing adventitious roots from cuttings and returning them to the propagation environment, resulted in subsequent re-rooting. Indeed, individual cuttings could develop new adventitious roots on four to five separate occasions over a 9 week period. Data showed that rooting potential increased, not decreased with time in the propagation environment and that cutting viability was unaffected. Root expression was faster (8-15 days) after the removal of previous roots compared to when the cuttings were first stuck (21 days). Exposing cuttings to IBA at the time of preparation, improved initial rooting in AC 10, but not in CCP 1001. Application of IBA once roots had formed had little effect on subsequent development, but zeatin reduced root length and promoted root number and dry matter accumulation. These results challenge our hypothesis, and indicate that rooting potential remains high in Anacardium. The precise mechanisms that regulate the number of adventitious roots expressed, remain to be determined. Nevertheless, results indicate that rooting potential can be high in 'difficult-to-root' species, and suggest that providing supportive environments is the key to expressing this potential. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The translocation of C and N in a maize-Striga hermonthica association was investigated at three rates of nitrogen application in a glasshouse experiment. The objectives were to measure the transfer of C and N from maize to S. hermonthica and to determine whether the amount of N in the growing medium affected the proportions of C and N transferred. Young plants of maize were labelled in a (CO2)-C-13 atmosphere and leaf tips were immersed in ((NH4)-N-15)(2)SO4 Solution. The Striga x N interaction was not significant for any of the responses measured. Total dry matter for infected maize was significantly smaller than for uninfected maize from 43 to 99 days after planting, but N application increased total dry matter at all sampling times. Infected maize plants partitioned 39-45 % of their total dry matter to the roots compared with 28-31 % for Uninfected maize. Dry matter of S. hermonthica was not affected by the rate of N applied. S. hermonthica derived 100 % of its carbon from maize before emergence, decreasing to 22-59 % thereafter; the corresponding values for nitrogen were up to 59 % pre-emergence and Lip to 100 % after emergence. The relative proportions of nitrogen depleted from the host (up to 10 %) were greater than those of carbon (maximum 1.2 %) at all times of sampling after emergence of the parasite. The results show that the parasite was more dependent on the host for nitrogen than for carbon.
Resumo:
The suitability of cryopreservation for the secure, long-term storage of the rare and endangered species Cosmos atrosanguineus was investigated. Using encapsulation/dehydration of shoot tips in alginate strips, survival rates of up to 100 % and shoot regeneration of up to 35 % were achieved. Light and electron microscopy studies indicated that cellular damage to some regions of the shoot tip during the freeze/thaw procedure was high, although cell survival in and around the meristematic region allowed shoot tip regeneration. The genetic fingerprinting technique, amplified fragment length polymorphisms (AFLPs), showed that no detectable genetic variation was present between material of C. atrosanguineus at the time of initiation into tissue culture and that which had been cryopreserved, stored in liquid nitrogen for 12 months and regenerated. Weaned plantlets that were grown under glasshouse conditions exhibited no morphological variation from non-frozen controls.
Resumo:
Matrix-assisted laser desorption/ionization (MALDI) is a key technique in mass spectrometry (MS)-based proteomics. MALDI MS is extremely sensitive, easy-to-apply, and relatively tolerant to contaminants. Its high-speed data acquisition and large-scale, off-line sample preparation has made it once again the focus for high-throughput proteomic analyses. These and other unique properties of MALDI offer new possibilities in applications such as rapid molecular profiling and imaging by MS. Proteomics and its employment in Systems Biology and other areas that require sensitive and high-throughput bioanalytical techniques greatly depend on these methodologies. This chapter provides a basic introduction to the MALDI methodology and its general application in proteomic research. It describes the basic MALDI sample preparation steps and two easy-to-follow examples for protein identification including extensive notes on these topics with practical tips that are often not available in the Subheadings 2 and 3 of research articles.
Resumo:
A series of three-point bend tests using single edge notched testpieces of pure polycrystalline ice have been performed at three different temperatures (–20°C, –30°C and –40°C). The displacement rate was varied from 1 mm/min to 100 mm/min, producing the crack tip strain rates from about 10–3 to 10–1 s–1. The results show that (a) the fracture toughness of pure polycrystalline ice given by the critical stress intensity factor (K IC) is much lower than that measured from the J—integral under identical conditions; (b) from the determination of K IC, the fracture toughness of pure polycrystalline ice decreases with increasing strain rate and there is good power law relationship between them; (c) from the measurement of the J—integral, a different tendency was appeared: when the crack tip strain rate exceeds a critical value of 6 × 10–3 s–1, the fracture toughness is almost constant but when the crack tip strain rate is less than this value, the fracture toughness increases with decreasing crack tip strain rate. Re-examination of the mechanisms of rate-dependent fracture toughness of pure polycrystalline ice shows that the effect of strain rate is related not only to the blunting of crack tips due to plasticity, creep and stress relaxation but also to the nucleation and growth of microcracks in the specimen.
Resumo:
The positive, psychotic symptoms of schizophrenia can be treated by antipsychotic drugs and it has been assumed that these are antagonists at the D-2 and D-3 dopamine receptors in the brain. Recently, the D-2/D-3 partial agonist aripiprazole has been introduced as an antipsychotic drug. It has also been realized that, using in vitro assays, the other antipsychotic drugs are in fact inverse agonists at D-2/D-3 dopamine receptors. This raises questions about how these disparate drugs can achieve a similar clinical outcome. In this review, I shall consider the efficacies of these drugs in signalling assays and how these efficacies might affect treatment outcomes. It seems that the treatment outcome might depend on the overall level of cell stimulation, which is in turn dependent on the level of residual dopamine and the efficacy of the drug in signalling assays.
Resumo:
Glutamate plays a central role in a wide range of metabolic processes in bacterial cells. This review focuses on the involvement of glutamate in bacterial stress responses. In particular it reviews the role of glutamate metabolism in response against acid stress and other stresses. The glutamate decarboxylase (GAD) system has been implicated in acid tolerance in several bacterial genera. This system facilitates intracellular pH homeostasis by consuming protons in a decarboxylation reaction that produces γ-aminobutyrate (GABA) from glutamate. An antiporter system is usually present to couple the uptake of glutamate to the efflux of GABA. Recent insights into the functioning of this system will be discussed. Finally the intracellular fate of GABA will also be discussed. Many bacteria are capable of metabolising GABA to succinate via the GABA shunt pathway. The role and regulation of this pathway will be addressed in the review. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Resumo:
Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, whereas the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).