6 resultados para Transport density

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A time series of the observed transport through an array of moorings across the Mozambique Channel is compared with that of six model runs with ocean general circulation models. In the observations, the seasonal cycle cannot be distinguished from red noise, while this cycle is dominant in the transport of the numerical models. It is found, however, that the seasonal cycles of the observations and numerical models are similar in strength and phase. These cycles have an amplitude of 5 Sv and a maximum in September, and can be explained by the yearly variation of the wind forcing. The seasonal cycle in the models is dominant because the spectral density at other frequencies is underrepresented. Main deviations from the observations are found at depths shallower than 1500 m and in the 5/y–6/y frequency range. Nevertheless, the structure of eddies in the models is close to the observed eddy structure. The discrepancy is found to be related to the formation mechanism and the formation position of the eddies. In the observations, eddies are frequently formed from an overshooting current near the mooring section, as proposed by Ridderinkhof and de Ruijter (2003) and Harlander et al. (2009). This causes an alternation of events at the mooring section, varying between a strong southward current, and the formation and passing of an eddy. This results in a large variation of transport in the frequency range of 5/y–6/y. In the models, the eddies are formed further north and propagate through the section. No alternation similar to the observations is observed, resulting in a more constant transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CMIP3 (IPCC AR4) models show a consistent intensification and poleward shift of the westerly winds over the Southern Ocean during the 21st century. However, the responses of the Antarctic Circumpolar Currents (ACC) show great diversity in these models, with many even showing reductions in transport. To obtain some understanding of diverse responses in the ACC transport, we investigate both external atmospheric and internal oceanic processes that control the ACC transport responses in these models. While the strengthened westerlies act to increase the tilt of isopycnal surfaces and hence the ACC transport through Ekman pumping effects, the associated changes in buoyancy forcing generally tend to reduce the surface meridional density gradient. The steepening of isopycnal surfaces induced by increased wind forcing leads to enhanced (parameterized) eddy-induced transports that act to reduce the isopycnal slopes. There is also considerable narrowing of the ACC that tends to reduce the ACC transport, caused mainly by the poleward shifts of the subtropical gyres and to a lesser extent by the equatorward expansions of the subpolar gyres in some models. If the combined effect of these retarding processes is larger than that of enhanced Ekman pumping, the ACC transport will be reduced. In addition, the effect of Ekman pumping on the ACC is reduced in weakly stratified models. These findings give insight into the reliability of IPCC-class model predictions of the Southern Ocean circulation, and into the observed decadal-scale steady ACC transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport of the Antarctic Circumpolar Current (ACC) varies strongly across the coupled GCMs (general circulation models) used for the IPCC AR4. This note shows that a large fraction of this across-model variance can be explained by relating it to the parameterization of eddy-induced transports. In the majority of models this parameterization is based on the study by Gent and McWilliams (1990). The main parameter is the quasi-Stokes diffusivity kappa (often referred to less accurately as ’’thickness diffusion’’). The ACC transport and the meridional density gradient both correlate strongly with kappa across those models where kappa is a prescribed constant. In contrast, there is no correlation with the isopycnal diffusivity jiso across the models. The sensitivity of the ACC transport to kappa is larger than to the zonal wind stress maximum. Experiments with the fast GCM FAMOUS show that changing kappa directly affects the ACC transport by changing the density structure throughout the water column. Our results suggest that this limits the role of the wind stress magnitude in setting the ACC transport in FAMOUS. The sensitivities of the ACC and the meridional density gradient are very similar across the AR4 GCMs (for those models where kappa is a prescribed constant) and among the FAMOUS experiments. The strong sensitivity of the ACC transport to kappa needs careful assessment in climate models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our knowledge of stratospheric O3-N2O correlations is extended, and their potential for model-measurement comparison assessed, using data from the Atmospheric Chemistry Experiment (ACE) satellite and the Canadian Middle Atmosphere Model (CMAM). ACE provides the first comprehensive data set for the investigation of interhemispheric, interseasonal, and height-resolved differences of the O_3-N_2O correlation structure. By subsampling the CMAM data, the representativeness of the ACE data is evaluated. In the middle stratosphere, where the correlations are not compact and therefore mainly reflect the data sampling, joint probability density functions provide a detailed picture of key aspects of transport and mixing, but also trace polar ozone loss. CMAM captures these important features, but exhibits a displacement of the tropical pipe into the Southern Hemisphere (SH). Below about 21 km, the ACE data generally confirm the compactness of the correlations, although chemical ozone loss tends to destroy the compactness during late winter/spring, especially in the SH. This allows a quantitative comparison of the correlation slopes in the lower and lowermost stratosphere (LMS), which exhibit distinct seasonal cycles that reveal the different balances between diabatic descent and horizontal mixing in these two regions in the Northern Hemisphere (NH), reconciling differences found in aircraft measurements, and the strong role of chemical ozone loss in the SH. The seasonal cycles are qualitatively well reproduced by CMAM, although their amplitude is too weak in the NH LMS. The correlation slopes allow a "chemical" definition of the LMS, which is found to vary substantially in vertical extent with season.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the prerequisites for achieving skill in decadal climate prediction is to initialize and predict the circulation in the Atlantic Ocean successfully. The RAPID array measures the Atlantic Meridional Overturning Circulation (MOC) at 26°N. Here we develop a method to include these observations in the Met Office Decadal Prediction System (DePreSys). The proposed method uses covariances of overturning transport anomalies at 26°N with ocean temperature and salinity anomalies throughout the ocean to create the density structure necessary to reproduce the observed transport anomaly. Assimilating transport alone in this way effectively reproduces the observed transport anomalies at 26°N and is better than using basin-wide temperature and salinity observations alone. However, when the transport observations are combined with in situ temperature and salinity observations in the analysis, the transport is not currently reproduced so well. The reasons for this are investigated using pseudo-observations in a twin experiment framework. Sensitivity experiments show that the MOC on monthly time-scales, at least in the HadCM3 model, is modulated by a mechanism where non-local density anomalies appear to be more important for transport variability at 26°N than local density gradients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrograde transport of NF-κB from the synapse to the nucleus in neurons is mediated by the dynein/dynactin motor complex and can be triggered by synaptic activation. The calibre of axons is highly variable ranging down to 100 nm, aggravating the investigation of transport processes in neurites of living neurons using conventional light microscopy. In this study we quantified for the first time the transport of the NF-κB subunit p65 using high-density single-particle tracking in combination with photoactivatable fluorescent proteins in living mouse hippocampal neurons. We detected an increase of the mean diffusion coefficient (Dmean) in neurites from 0.12 ± 0.05 µm2/s to 0.61 ± 0.03 µm2/s after stimulation with glutamate. We further observed that the relative amount of retrogradely transported p65 molecules is increased after stimulation. Glutamate treatment resulted in an increase of the mean retrograde velocity from 10.9 ± 1.9 to 15 ± 4.9 µm/s, whereas a velocity increase from 9 ± 1.3 to 14 ± 3 µm/s was observed for anterogradely transported p65. This study demonstrates for the first time that glutamate stimulation leads to an increased mobility of single NF-κB p65 molecules in neurites of living hippocampal neurons.