92 resultados para Transgenic rice
em CentAUR: Central Archive University of Reading - UK
Resumo:
Background and Aims The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. Methods The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. Key results The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. Conclusions The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm.
Resumo:
We have compiled two comprehensive gene expression profiles from mature leaf and immature seed tissue of rice (Oryza sativa ssp. japonica cultivar Nipponbare) using Serial Analysis of Gene Expression (SAGE) technology. Analysis revealed a total of 50 519 SAGE tags, corresponding to 15 131 unique transcripts. Of these, the large majority (approximately 70%) occur only once in both libraries. Unexpectedly, the most abundant transcript (approximately 3% of the total) in the leaf library was derived from a type 3 metallothionein gene. The overall frequency profiles of the abundant tag species from both tissues differ greatly and reveal seed tissue as exhibiting a non-typical pattern of gene expression characterized by an over abundance of a small number of transcripts coding for storage proteins. A high proportion ( approximately 80%) of the abundant tags (> or = 9) matched entries in our reference rice EST database, with many fewer matches for low abundant tags. Singleton transcripts that are common to both tissues were collated to generate a summary of low abundant transcripts that are expressed constitutively in rice tissues. Finally and most surprisingly, a significant number of tags were found to code for antisense transcripts, a finding that suggests a novel mechanism of gene regulation, and may have implications for the use of antisense constructs in transgenic technology.
Resumo:
High resolution descriptions of plant distribution have utility for many ecological applications but are especially useful for predictive modelling of gene flow from transgenic crops. Difficulty lies in the extrapolation errors that occur when limited ground survey data are scaled up to the landscape or national level. This problem is epitomized by the wide confidence limits generated in a previous attempt to describe the national abundance of riverside Brassica rapa (a wild relative of cultivated rapeseed) across the United Kingdom. Here, we assess the value of airborne remote sensing to locate B. rapa over large areas and so reduce the need for extrapolation. We describe results from flights over the river Nene in England acquired using Airborne Thematic Mapper (ATM) and Compact Airborne Spectrographic Imager (CASI) imagery, together with ground truth data. It proved possible to detect 97% of flowering B. rapa on the basis of spectral profiles. This included all stands of plants that occupied >2m square (>5 plants), which were detected using single-pixel classification. It also included very small populations (<5 flowering plants, 1-2m square) that generated mixed pixels, which were detected using spectral unmixing. The high detection accuracy for flowering B. rapa was coupled with a rather large false positive rate (43%). The latter could be reduced by using the image detections to target fieldwork to confirm species identity, or by acquiring additional remote sensing data such as laser altimetry or multitemporal imagery.
Resumo:
Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.
Resumo:
A dual isotopic technique was used to assess the effects of soil type, and residues of Gliricidia sepium, without and with added fertiliser-P on the utilisation of P. Upland rice (Oryza sativa) was grown for 70 days in two tropical acid soils of different P sorbing capacity and P status. Uniformly P-32-labelled soils were treated with inorganic fertiliser-P tagged with P-33, Gliricidia sepium residue applied at planting and 3 weeks earlier, and in a combination of fertiliser-P and Gliricidia applied at and 3 weeks before planting. There were significant responses of shoot and root weights, and total P uptake to Gliricidia- and/or fertiliser-P addition in the Ultisol (low P status) but not the Oxisol (high P status), suggesting that P in the latter soil was not yield limiting, despite the high standard P requirement. Similarly, incorporation of Gliricidia three weeks before planting further increased shoot weight only in the Ultisol. There were generally higher proportions, quantities and percent utilisations of the Gliricidia- P and fertiliser-P in the Ultisol than in the Oxisol. Gliricidia significantly increased the utilisation of fertiliser-P only in the Ultisol. However, early application of Gliricidia increased Gliricidia- P but not fertiliser-P utilisation in the Ultisol. Added fertiliser-P did not influence Gliricidia- P utilisation.
Resumo:
A study of the commercial growing of different varieties of Bacillus thuringiensis (Bt) cotton compares the performance of growing official and unofficial hybrid varieties of Bt cotton and conventional (non-Bt) hybrids in Gujarat by 622 farmers. Results suggest that the official Bt varieties (MECH 12 and MECH 162) significantly outperform the unofficial varieties. However, unofficial, locally produced Bt hybrids can also perform significantly better than non-Bt hybrids, although second generation (F-2) Bt seed appears to have no yield advantage compared to non-Bt hybrids but can save on insecticide use. Although hybrid vigour is reduced, or even lost, with F-2 seed the Bt gene still confers some advantage. The F-2 seed is regarded as 'GM' by the farmers (and is sold as such), even though its yield performance is little better than the non-GM hybrids. The results help to explain why there is so much confusion arising from GM cotton release in India.
Resumo:
Silicon release from rice straw and amorphous silica when shaken in solution with five Sri Lankan soils was studied indirectly using sorption isotherms and changes in concentration and directly using straw in dialysis bags examined using electron microscopy. The aim was to further our understanding of the processes and factors affecting the release of straw-Si in soils and its availability to rice. The soils (alfisols and ultisols) shaken with 0.1 M NaCl (5 g per 125 mL for 250 days) produced concentrations of 1 - 4 mg L-1 of monosilicic acid-Si. Amorphous silica added to these suspensions (36.5 mg, containing 17 mg Si) raised the concentrations to 20 - 40 mg L-1, and added rice straw (0.5 g, containing 17 mg Si) gave 10 - 25 mg L-1. Sorption isotherms (7 days equilibrations) were used to calculate from the concentrations the amounts of Si released ( 24 - 38% and 8 - 21%, respectively). Both materials gave about 40 mg L-1 of monosilicic acid-Si plus 30 mg L-1 of disilicic acid-Si when shaken in solution alone (5 g per 125 mL). Straw in dialysis bags ( 0.5 g per 25 mL in 0.1 M NaCl) was shaken in soil suspension ( 5 g per 100 mL) for 60 days. Similar concentrations and releases were measured to those obtained above. About one fifth of the mass of straw was lost by decomposition in the first 15 days. A chloroform treatment prevented decomposition, but Si release was unaffected. Disintegration continued throughout the experiments, with phytoliths being exposed and dissolved. Compared to the rate of release from straw into solution without soil, the release of Si into soil suspensions was increased during the first 20 days by adsorption on the soil, but was then reduced probably through the effect of Fe and Al on the phytolith surfaces. The extent of this blocking effect varied between soils and was not simply related to soil pH.
Resumo:
This chapter describes the present status and future prospects for transgenic (genetically modified) crops. It concentrates on the most recent data obtained from patent databases and field trial applications, as well as the usual scientific literature. By these means, it is possible to obtain a useful perspective into future commercial products and international trends. The various research areas are subdivided on the basis of those associated with input (agronomic) traits and those concerned with output (e.g., food quality) characteristics. Among the former group are new methods of improving stress resistance, and among the latter are many examples of producing pharmaceutical compounds in plants.
Resumo:
Transgenic crops are now grown commercially on several million hectares, principally in North America. To date, the predominant crops are maize (corn), soybean, cotton, and potatoes. In addition, there have been field trials of transgenics from at least 52 species including all the major field crops, vegetables, and several herbaceous and woody species. This review summarizes recent data relating to such trials, particularly in terms of the trends away from simple, single gene traits such as herbicide and insect resistance towards more complex agronomic traits such as growth rate and increased photosynthetic efficiency. Much of the recent information is derived from inspection of patent databases, a useful source of information on commercial priorities. The review also discusses the time scale for the introduction of these transgenes into breeding populations and their eventual release as new varieties.
Resumo:
An optimized protocol has been developed for the efficient and rapid genetic modification of sugar beet (Beta vulgaris L.). A polyethylene glycol-mediated DNA transformation technique could be applied to protoplast populations enriched specifically for a single totipotent cell type derived from stomatal guard cells, to achieve high transformation frequencies. Bialaphos resistance, conferred by the pat gene, produced a highly efficient selection system. The majority of plants were obtained within 8 to 9 weeks and were appropriate for plant breeding purposes. All were resistant to glufosinate-ammonium-based herbicides. Detailed genomic characterization has verified transgene integration, and progeny analysis showed Mendelian inheritance.
Resumo:
In this article we examine sources of technical efficiency for rice farming in Bangladesh. The motivation for the analysis is the need to close the rice yield gap to enable food security. We employ the DEA double bootstrap of Simar and Wilson (2007) to estimate and explain technical efficiency. This technique overcomes severe limitations inherent in using the two-stage DEA approach commonly employed in the efficiency literature. From a policy perspective our results show that potential efficiency gains to reduce the yield gap are greater than previously found. Statistically positive influences on technical efficiency are education, extension and credit, with age being a negative influence.
Resumo:
dTwo genetic constructs used to confer improved agronomic characteristics, namely herbicide tolerance (HT) in maize and soyabean and insect resistance (Bt) in maize, are considered in respect of feeding to farm livestock, animal performance and the nutritional value and safety of animal products. A review of nucleic acid (DNA) and protein digestion in farm livestock concludes that the frequency of intact transgenic DNA and proteins of GM and non-GM crops being absorbed is minimal/non existent, although there is some evidence of the presence of short fragments of rubisco DNA of non-GM soya in animal tissues. It has been established that feed processing (especially heat) prior to feeding causes significant disruption of plant DNA. Studies with ruminant and non-ruminant farm livestock offered GM feeds demonstrated that animal performance and product composition are unaffected and that there is no evidence of transgenic DNA or proteins of current GM in the products of animals consuming such feeds. On this evidence, current HT and Bt constructs represent no threat to the health of animals, or humans consuming the products of such animals. However as new GM constructs become available it will be necessary to subject these to rigorous evaluation.
Resumo:
A study of the commercial growing of different varieties of Bacillus thuringiensis (Bt) cotton compares the performance of growing official and unofficial hybrid varieties of Bt cotton and conventional (non-Bt) hybrids in Gujarat by 622 farmers. Results suggest that the official Bt varieties (MECH 12 and MECH 162) significantly outperform the unofficial varieties. However, unofficial, locally produced Bt hybrids can also perform significantly better than non-Bt hybrids, although second generation (F-2) Bt seed appears to have no yield advantage compared to non-Bt hybrids but can save on insecticide use. Although hybrid vigour is reduced, or even lost, with F-2 seed the Bt gene still confers some advantage. The F-2 seed is regarded as 'GM' by the farmers (and is sold as such), even though its yield performance is little better than the non-GM hybrids. The results help to explain why there is so much confusion arising from GM cotton release in India.
Resumo:
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.