67 resultados para Transformation homéotique
em CentAUR: Central Archive University of Reading - UK
Resumo:
The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.
Resumo:
How do organizations previously dominated by the state develop dynamic capabilities that would support their growth in a competitive market economy? We develop a theoretical framework of organizational transformation that explains the processes by which organizations learn and develop dynamic capabilities in transition economies. Specifically, the framework theorizes about the importance of, and inter-relationships between, leadership, organizational learning, dynamic capabilities, and performance over three stages of transformation. Propositions derived from this framework explain the pre-conditions enabling organizational learning, the linkages between types of learning and functions of dynamic capabilities, and the feedback from dynamic capabilities to organizational learning that allows firms in transition economies to regain their footing and build long-term competitive advantage. We focus on transition contexts, where these processes have been magnified and thus offer new insights into strategizing in radically altered environments.
Resumo:
As the most commercially valuable cereal grown worldwide and the best-characterized in genetic terms, maize was predictably the first target for transformation among the important crops. Indeed, the first attempt at transformation of any plant was conducted on maize (1). These early efforts, however, were inevitably unsuccessful, since at that time, there were no reliable methods to permit the introduction of DNA into a cell, the expression of that DNA, and the identification of progeny derived from such a “transgenic” cell (2). Almost 20 years later, these technologies were finally combined, and the first transgenic cereals were produced. In the last few years, methods have become increasingly efficient, and transgenic maize has now been produced from protoplasts as well as from Agrobacterium-medieited or “Biolistic” delivery to embryogenic tissue (for a general comparison of methods used for maize, the reader is referred to a recent review—ref. 3). The present chapter will describe probably the simplest of the available procedures, namely the delivery of DNA to the recipient cells by vortexing them in the presence of silicon carbide (SiC) whiskers (this name will be used in preference to the term “fiber,” since it more correctly describes the single crystal nature of the material).
Resumo:
Our understanding of the evolution of microbial pathogens has been advanced by the discovery of "islands" of DNA that differ from core genomes and contain determinants of virulence [1, 2]. The acquisition of genomic islands (GIs) by horizontal gene transfer (HGT) is thought to have played a major role in microbial evolution. There are, however, few practical demonstrations of the acquisition of genes that control virulence, and, significantly, all have been achieved outside the animal or plant host. Loss of a GI from the bean pathogen Pseudomonas syringae pv. phaseolicola (Pph) is driven by exposure to the stress imposed by the plant's resistance response [3]. Here, we show that the complete episomal island, which carries pathogenicity genes including the effector avrPphB, transfers between strains of Pph by transformation in planta and inserts at a specific att site in the genome of the recipient. Our results show that the evolution of bacterial pathogens by HGT may be achieved via transformation, the simplest mechanism of DNA exchange. This process is activated by exposure to plant defenses, when the pathogen is in greatest need of acquiring new genetic traits to alleviate the antimicrobial stress imposed by plant innate immunity [4].
Resumo:
One of the recurring themes of the debates concerning the application of genetic transformation technology has been the role of Intellectual Property Rights (IPR). This term covers both the content of patents and the confidential expertise usually related to methodology and referred to as 'Trade Secrets'. This review explains the concepts behind patent protection, and discusses the wide-ranging scope of existing patents that cover all aspects of transgenic technology, from selectable markers and novel promoters to methods of gene introduction. Although few of the patents in this area have any real commercial value, there are a small number of key patents that restrict the 'freedom to operate' of new companies seeking to exploit the methods. Over the last 20 years, these restrictions have forced extensive cross-licensing between ag-biotech companies and have been one of the driving forces behind the consolidation of these companies. Although such issues are often considered of little interest to the academic scientist working in the public sector, they are of great importance in any discussion of the role of 'public-good breeding' and of the relationship between the public and private sectors.
Resumo:
Solvent induced single-crystal-to-single-crystal transformation has been demonstrated indicating the dynamic behavior of one dimensional arrays obtained from a self-assembled new synthetic cyclic peptide.
Resumo:
An interesting chemical transformation of trialkylamines has taken place during the reaction of 2-(2', 6'-dimethylphenylazo)- 4-methylphenol ( 1) with K-2[ PtCl4] in refluxing methanol in the presence of trialkylamines, leading to the formation of organoplatinum complexes ( 2 and 3), where ligand 1 is coordinated as a bidentate N, O donor and the transformed trialkylamines are coordinated as bidentate C, N donors.
Resumo:
Sequential crystallization of poly(L-lactide) (PLLA) followed by poly(epsilon-caprolactone) (PCL) in double crystalline PLLA-b-PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122 degrees C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42 degrees C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42 degrees C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystalli zation of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122 degrees C and after 15 min at 42 degrees C.
Resumo:
A catemeric crystal structure of cyheptamide undergoes a transformation in the solid-state upon heating to produce a dimer-based form whose structure has been determined from laboratory X-ray powder diffraction ( XRPD) data, thereby providing the first conclusive evidence of a carbamazepine analogue crystallising in both hydrogen bonded motifs.
Resumo:
This paper identifies the major challenges in the area of pattern formation. The work is also motivated by the need for development of a single framework to surmount these challenges. A framework based on the control of macroscopic parameters is proposed. The issue of transformation of patterns is specifically considered. A definition for transformation and four special cases, namely elementary and geometrical transformations by repositioning all or some robots in the pattern are provided. Two feasible tools for pattern transformation namely, a macroscopic parameter method and a mathematical tool - Moebius transformation also known as the linear fractional transformation are introduced. The realization of the unifying framework considering planning and communication is reported.
Resumo:
The work reported in this paper is motivated by the need to investigate general methods for pattern transformation. A formal definition for pattern transformation is provided and four special cases namely, elementary and geometric transformation based on repositioning all and some agents in the pattern are introduced. The need for a mathematical tool and simulations for visualizing the behavior of a transformation method is highlighted. A mathematical method based on the Moebius transformation is proposed. The transformation method involves discretization of events for planning paths of individual robots in a pattern. Simulations on a particle physics simulator are used to validate the feasibility of the proposed method.