107 resultados para Trait-mediated indirect effects
em CentAUR: Central Archive University of Reading - UK
Resumo:
The role of indirect interactions in structuring communities is becoming increasingly recognised. Plant fungi can bring about changes in plant chemistry which may affect insect herbivores that share the same plant, and hence the two may interact indirectly. This study investigated the indirect effects of a fungal pathogen (Marssonina betulae) of silver birch (Betula pendula) on an aphid (Euceraphis betulae), and the processes underpinning the interaction. There was a strong positive association between natural populations of the aphid and leaves bearing high fungal infection. In choice tests, significantly more aphids settled on leaves inoculated with the fungus than on asymptomatic leaves. Individual aphids reared on inoculated leaves were heavier, possessed longer hind tibiae and displayed enhanced embryo development compared with aphids reared on asymptomatic leaves; population growth rate was also positively correlated with fungal infection when groups of aphids were reared on inoculated branches. Changes in leaf chemistry were associated with fungal infection with inoculated leaves containing higher concentrations of free-amino acids. This may reflect a plant-initiated response to fungal attack in which free amino acids from the degradation of mesophyll cells are translocated out of infected leaves via the phloem. These changes in plant chemistry are similar to those occurring during leaf senescence, and are proposed as the mechanistic basis for the positive interaction between the fungus and aphid.
Resumo:
Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd ) compares relatively well to the satellite data at least over the ocean. The relationship between �a and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and �a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–�a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between �a and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - �a relationship show a strong positive correlation between �a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of �a, and parameterisation assumptions such as a lower bound on Nd . Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic �a and satellite-retrieved Nd–�a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2.
Resumo:
We study individual decision making in a lottery-choice task performed by three different populations: gamblers under psychological treatment ("addicts"), gamblers’ spouses ("victims"), and people who are neither gamblers or gamblers’ spouses ("normals"). We find that addicts are willing to take less risk than normals, but the difference is smaller as a gambler’s time under treatment increases. The large majority of victims report themselves unwilling to take any risk at all. However, addicts in the first year of treatment react more than other addicts to the different values of the risk-return parameter.
Resumo:
A reduction in the numbers of macroinvertebrates present in soil may have a negative effect on soil structure, infiltration rates, and gas exchanges. Soil pollution by metal is known to have a detrimental effect on soil macrofauna. The aim of the present study was to evaluate (1) direct and indirect effects of soil pollution on soil macroinvertebrate bioturbation and (2) effects of the two macroinvertebrate communities found in a polluted and a nonpolluted area (one supposed sensitive, the other tolerant to metals) on burrow systems parameters. Macroinvertebrate porosity was studied using X-ray tomography. Three-dimensional reconstructions and characterisation of the burrow system were obtained using image analysis. Results showed that metal pollution principally affected the spatial distribution of macropores (more macropores were found near the soil surface) and the shape of the burrow system (branching rate was higher in the polluted soil), whereas soil macroinvertebrate composition principally affects burrow density parameters (the number of burrows was higher for the sensitive macroinvertebrate community).
Resumo:
Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.
Resumo:
Background Little is known about the relative effects of exposure to postnatal depression and parental conflict on the social functioning of school-aged children. This is, in part, because of a lack of specificity in the measurement of child and parental behaviour and a reliance on children's reports of their hypothetical responses to conflict in play. Methods In the course of a prospective longitudinal study of children of postnatally depressed and well women, 5-year-old children were videotaped at home with a friend in a naturalistic dressing-up play setting. As well as examining possible associations between the occurrence of postnatal depression and the quality of the children's interactions, we investigated the influence of parental conflict and co-operation, and the continuity of maternal depression. The quality of the current mother-child relationship was considered as a possible mediating factor. Results Exposure to postnatal depression was associated with increased likelihood, among boys, of displaying physical aggression in play with their friend. However, parental conflict mediated the effects of postnatal depression on active aggression during play, and was also associated with displays of autonomy and intense conflict. While there were no gender effects in terms of the degree or intensity of aggressive behaviours, girls were more likely to express aggression verbally using denigration and gloating whereas boys were more likely to display physical aggression via interpersonal and object struggles. Conclusions The study provided evidence for the specificity of effects, with strong links between parental and child peer conflict. These effects appear to arise from direct exposure to parental conflict, rather than indirectly, through mother-child interactions.
Resumo:
Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO2-induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO2-induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.
Resumo:
This review assesses the impacts, both direct and indirect, of man-made changes to the composition of the air over a 200 year period on the severity of arable crop disease epidemics. The review focuses on two well-studied UK arable crops,wheat and oilseed rape, relating these examples to worldwide food security. In wheat, impacts of changes in concentrations of SO2 in air on two septoria diseases are discussed using data obtained from historical crop samples and unpublished experimental work. Changes in SO2 seem to alter septoria disease spectra both through direct effects on infection processes and through indirect effects on soil S status. Work on the oilseed rape diseases phoma stem canker and light leaf spot illustrates indirect impacts of increasing concentrations of greenhouse gases, mediated through climate change. It is projected that, by the 2050s, if diseases are not controlled, climate change will increase yields in Scotland but halve yields in southern England. These projections are discussed in relation to strategies for adaptation to environmental change. Since many strategies take10–15 years to implement, it is important to take appropriate decisions soon. Furthermore, it is essential to make appropriate investment in collation of long-term data, modelling and experimental work to guide such decision-making by industry and government, as a contribution to worldwide food security.
Resumo:
The Met Office Unified Model is run for a case observed during Intensive Observation Period 18 (IOP18) of the Convective Storms Initiation Project (CSIP). The aims are to identify the physical processes that lead to perturbation growth at the convective scale in response to model-state perturbations and to determine their sensitivity to the character of the perturbations. The case is strongly upper-level forced but with detailed mesoscale/convective-scale evolution that is dependent on smaller-scale processes. Potential temperature is perturbed within the boundary layer. The effects on perturbation growth of both the amplitude and typical scalelength of the perturbations are investigated and perturbations are applied either sequentially (every 30 min throughout the simulation) or at specific times. The direct effects (within one timestep) of the perturbations are to generate propagating Lamb and acoustic waves and produce generally small changes in cloud parameters and convective instability. In exceptional cases a perturbation at a specific gridpoint leads to switching of the diagnosed boundary-layer type or discontinuous changes in convective instability, through the generation or removal of a lid. The indirect effects (during the entire simulation) are changes in the intensity and location of precipitation and in the cloud size distribution. Qualitatively different behaviour is found for strong (1K amplitude) and weak (0.01K amplitude) perturbations, with faster growth after sunrise found only for the weaker perturbations. However, the overall perturbation growth (as measured by the root-mean-square error of accumulated precipitation) reaches similar values at saturation, regardless of the perturbation characterisation.
Resumo:
We review the current status of knowledge regarding the role that flow parameters play in controlling the macrophyte communities of temperate lowland rivers. We consider both direct and indirect effects and the interaction with other factors known to control macrophyte communities. Knowledge gaps are identified and implications for the management of river systems considered. The main factors and processes controlling the status of macrophytes in lowland rivers are velocity (hence also discharge), light, substrate, competition, nutrient status and river management practices. We suggest that whilst the characteristics of any particular macrophyte community reflect the integral effects of a combination of the factors, fundamental importance can be attributed to the role of discharge and velocity in controlling instream macrophyte colonisation, establishment and persistence. Velocity and discharge also appear to control the relative influence of some of the other controlling factors. Despite the apparent importance of velocity in determining the status of macrophyte communities in lowland rivers, relatively little is understood about the nature of the processes controlling this relationship. Quantitative knowledge is particularly lacking. Consequently, the ability to predict macrophyte abundance and distribution in rivers is still limited. This is further complicated by the likely existence of feedback effects between the growth of macrophytes and velocity. Demand for water resources increases the pressure on lowland aquatic ecosystems. Despite growing recognition of the need to allocate water for the needs of instream biota, the inability to assess the flow requirements of macrophyte communities limits the scope to achieve this. This increases the likelihood of overexploitation of the water resource as other users, whose demands are quantifiable, are prioritised. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Effects of transition from late gestation to early lactation on plasma concentrations of glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1-(7-36) amide (GLP-1), and cholecystokinin (CCK) have not been reported in cattle. The objective of the present study was to measure plasma concentrations of GLP-1, GIP, CCK, insulin, glucose, and nonesterified fatty acids in blood plasma obtained from the coccygeal vein of 32 Holstein cows at an average of 11 d before, and 5, 12, and 19 d after calving. Feed dry matter intake (DMI) averaged 14.4, 17.7, and 19.9 kg/d on d 5, 12, and 19 of lactation, respectively, as milk yield increased (30.6, 36.6, and 39.7 kg/d, respectively). Plasma concentrations of insulin and glucose were lower postpartum than prepartum, but did not differ among samples collected after calving. In contrast, plasma concentration of gut peptides increased linearly after calving, perhaps as a consequence of increased feed intake and nutrient absorption; however, the increases in plasma concentrations of GIP and GLP-1 as lactation progressed were not associated with increased DMI per se, and likely reflect the endocrine and metabolic adaptations of lactogenesis. In contrast, increased concentration of CCK was related both to increasing days in milk and DMI. By 19 d postpartum, concentrations of GLP-1, GIP, and CCK increased by 2.3-, 1.8-, and 2.8-fold, respectively, compared with values at 11 d before calving. Although these peptides have direct and indirect effects that reduce appetite and DMI in other species (including increased insulin secretion), these may be glucose- or insulin-dependent functions, and insulin and glucose concentrations were reduced in early lactation.
Resumo:
Background: Children with cleft lip and palate are at risk for psychological problems. Difficulties in mother-child interactions may be relevant, and could be affected by the timing of lip repair. Method: We assessed cognitive development, behaviour problems, and attachment in 94 infants with cleft lip (with and without cleft palate) and 96 non-affected control infants at 18 months; mother-infant interactions were assessed at two, six and 12 months. Index infants received either 'early', neonatal, lip repair, or 'late' repair (3-4 months). Results: Index infants did not differ from controls on measures of behaviour problems or attachment, regardless of timing of lip repair; however, infants having late lip repair performed worse on the Bayley Scales of Mental Development; the cognitive development of early repair infants was not impaired. Difficulties in early mother-infant interactions mediated the effects of late lip repair on infant cognitive outcome. Conclusions: Early interaction difficulties between mothers and infants having late repair of cleft lip are associated with poor cognitive functioning at 18 months. Interventions to facilitate mother-infant interactions prior to surgical lip repair should be explored.
Resumo:
This study adopts the RBV of the firm in order to identify critical advantage-generating resources and capabilities with strong positive export strategy and performance implications. The proposed export performance model is tested using a structural equation modeling approach on a sample of 356 British exporters. We examine the individual as well as the concurrent (simultaneous) direct and indirect effects of five resource bundles on export performance. We find that four resources/capabilities: managerial, knowledge, planning, and technology, have a significant positive direct effect on export performance, while relational and physical resources exhibited no unique positive effect. We also find that the firm’s export strategy mediates the resource-performance nexus in the case of managerial and knowledge-based resources. The theoretical and methodological grounding of this study contributes to the advancement of export related research by providing better specification of the nature of the effects – direct or indirect – of particular resource factors on export performance.
Resumo:
Observational evidence indicates significant regional trends in solar radiation at the surface in both all-sky and cloud-free conditions. Negative trends in the downwelling solar surface irradiance (SSI) have become known as ‘dimming’ while positive trends have become known as ‘brightening’. We use the Met Office Hadley Centre HadGEM2 climate model to model trends in cloud-free and total SSI from the pre-industrial to the present-day and compare these against observations. Simulations driven by CMIP5 emissions are used to model the future trends in dimming/brightening up to the year 2100. The modeled trends are reasonably consistent with observed regional trends in dimming and brightening which are due to changes in concentrations in anthropogenic aerosols and, potentially, changes in cloud cover owing to the aerosol indirect effects and/or cloud feedback mechanisms. The future dimming/brightening in cloud-free SSI is not only caused by changes in anthropogenic aerosols: aerosol impacts are overwhelmed by a large dimming caused by increases in water vapor. There is little trend in the total SSI as cloud cover decreases in the climate model used here, and compensates the effect of the change in water vapor. In terms of the surface energy balance, these trends in SSI are obviously more than compensated by the increase in the downwelling terrestrial irradiance from increased water vapor concentrations. However, the study shows that while water vapor is widely appreciated as a greenhouse gas, water vapor impacts on the atmospheric transmission of solar radiation and the future of global dimming/brightening should not be overlooked.
Resumo:
The importance of aerosol emissions for near term climate projections is investigated by analysing simulations with the HadGEM2-ES model under two different emissions scenarios: RCP2.6 and RCP4.5. It is shown that the near term warming projected under RCP2.6 is greater than under RCP4.5, even though the greenhouse gas forcing is lower. Rapid and substantial reductions in sulphate aerosol emissions due to a reduction of coal burning in RCP2.6 lead to a reduction in the negative shortwave forcing due to aerosol direct and indirect effects. Indirect effects play an important role over the northern hemisphere oceans, especially the subtropical northeastern Pacific where an anomaly of 5-10\,Wm$^{-2}$ develops. The pattern of surface temperature change is consistent with the expected response to this surface radiation anomaly, whilst also exhibiting features that reflect redistribution of energy, and feedbacks, within the climate system. These results demonstrate the importance of aerosol emissions as a key source of uncertainty in near term projections of global and regional climate.