6 resultados para Training sets

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Can infants below age 1 year learn words in one context and understand them in another? To investigate this question, two groups of parents trained infants from age 9 months on 8 categories of common objects. A control group received no training. At 12 months, infants in the experimental groups, but not in the control group, showed comprehension of the words in a new context. It appears that infants under 1 year old can learn words in a decontextualized, as distinct from a context-bound, fashion. Perceptual variability within the to-be-learned categories, and the perceptual similarity between training sets and the novel test items, did not appear to affect this learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Within a therapeutic gene by environment (GxE) framework, we recently demonstrated that variation in the Serotonin Transporter Promoter Polymorphism; 5HTTLPR and marker rs6330 in Nerve Growth Factor gene; NGF is associated with poorer outcomes following cognitive behaviour therapy (CBT) for child anxiety disorders. The aim of this study was to explore one potential means of extending the translational reach of G×E data in a way that may be clinically informative. We describe a ‘risk-index’ approach combining genetic, demographic and clinical data and test its ability to predict diagnostic outcome following CBT in anxious children. Method. DNA and clinical data were collected from 384 children with a primary anxiety disorder undergoing CBT. We tested our risk model in five cross-validation training sets. Results. In predicting treatment outcome, six variables had a minimum mean beta value of 0.5: 5HTTLPR, NGF rs6330, gender, primary anxiety severity, comorbid mood disorder and comorbid externalising disorder. A risk index (range 0-8) constructed from these variables had moderate predictive ability (AUC = .62-.69) in this study. Children scoring high on this index (5-8) were approximately three times as likely to retain their primary anxiety disorder at follow-up as compared to those children scoring 2 or less. Conclusion. Significant genetic, demographic and clinical predictors of outcome following CBT for anxiety-disordered children were identified. Combining these predictors within a risk-index could be used to identify which children are less likely to be diagnosis free following CBT alone or thus require longer or enhanced treatment. The ‘risk-index’ approach represents one means of harnessing the translational potential of G×E data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.