30 resultados para Traffic Conflict.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Model based vision allows use of prior knowledge of the shape and appearance of specific objects to be used in the interpretation of a visual scene; it provides a powerful and natural way to enforce the view consistency constraint. A model based vision system has been developed within ESPRIT VIEWS: P2152 which is able to classify and track moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The fundamental basis of the method has been previously reported. This paper presents recent developments which have extended the scope of the system to include (i) multiple cameras, (ii) variable camera geometry, and (iii) articulated objects. All three enhancements have easily been accommodated within the original model-based approach
Resumo:
The paper describes a novel integrated vision system in which two autonomous visual modules are combined to interpret a dynamic scene. The first module employs a 3D model-based scheme to track rigid objects such as vehicles. The second module uses a 2D deformable model to track non-rigid objects such as people. The principal contribution is a novel method for handling occlusion between objects within the context of this hybrid tracking system. The practical aim of the work is to derive a scene description that is sufficiently rich to be used in a range of surveillance tasks. The paper describes each of the modules in outline before detailing the method of integration and the handling of occlusion in particular. Experimental results are presented to illustrate the performance of the system in a dynamic outdoor scene involving cars and people.
Resumo:
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.
Resumo:
In analysing the release of agricultural land to urban development, the urban fringe literature has not focused on whether farmers are able to relocate from the urban fringe to remoter rural areas. Through interviews with representatives from the poultry industry in two Australian states, this paper identifies that poultry farm relocation strategies are constrained by off-farm economic relations, the land-use planning system and financial considerations. Closely aligned to these constraints on relocation is the on-going process of poultry farm intensification, which is seen as presenting rising problems for land-use management around expanding metropolitan centres in Australia. Of particular concern is the potential for amenity complaints and associated land-use conflicts, which have not been comprehensively investigated. Recognising that existing environmental and land-use planning controls are ineffective in producing amicable solutions when conflict involving poultry farming is at its most intense, the paper calls for improvements to the regulatory system, including greater consideration for how the process of relocation can be encouraged. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Elucidating the controls on the location and vigor of ice streams is crucial to understanding the processes that lead to fast disintegration of ice flows and ice sheets. In the former North American Laurentide ice sheet, ice stream occurrence appears to have been governed by topographic troughs or areas of soft-sediment geology. This paper reports robust evidence of a major paleo-ice stream over the northwestern Canadian Shield, an area previously assumed to be incompatible with fast ice flow because of the low relief and relatively hard bedrock. A coherent pattern of subglacial bedforms (drumlins and megascalle glacial lineations) demarcates the ice stream flow set, which exhibits a convergent onset zone, a narrow main trunk with abrupt lateral margins, and a lobate terminus. Variations in bedform elongation ratio within the flow set match theoretical expectations of ice velocity. In the center of the ice stream, extremely parallel megascalle glacial lineations tens of kilometers long with elongation ratios in excess of 40:1 attest to a single episode of rapid ice flow. We conclude that while bed properties are likely to be influential in determining the occurrence and vigor of ice streams, contrary to established views, widespread soft-bed geology is not an essential requirement for those ice streams without topographic control. We speculate that the ice stream acted as a release valve on ice-sheet mass balance and was initiated by the presence of a proglacial lake that destabilized the ice-sheet margin and propagated fast ice flow through a series of thermomechanical feedbacks involving ice flow and temperature.
Resumo:
Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect(1), although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate(2). Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds(3). Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive(1,2,4). Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model(5,6) for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.