20 resultados para Tracking performance
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post- processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.
Resumo:
The main activity carried out by the geophysicist when interpreting seismic data, in terms of both importance and time spent is tracking (or picking) seismic events. in practice, this activity turns out to be rather challenging, particularly when the targeted event is interrupted by discontinuities such as geological faults or exhibits lateral changes in seismic character. In recent years, several automated schemes, known as auto-trackers, have been developed to assist the interpreter in this tedious and time-consuming task. The automatic tracking tool available in modem interpretation software packages often employs artificial neural networks (ANN's) to identify seismic picks belonging to target events through a pattern recognition process. The ability of ANNs to track horizons across discontinuities largely depends on how reliably data patterns characterise these horizons. While seismic attributes are commonly used to characterise amplitude peaks forming a seismic horizon, some researchers in the field claim that inherent seismic information is lost in the attribute extraction process and advocate instead the use of raw data (amplitude samples). This paper investigates the performance of ANNs using either characterisation methods, and demonstrates how the complementarity of both seismic attributes and raw data can be exploited in conjunction with other geological information in a fuzzy inference system (FIS) to achieve an enhanced auto-tracking performance.
Resumo:
This paper presents the PETS2009 outdoor crowd image analysis surveillance dataset and the performance evaluation of people counting, detection and tracking results using the dataset submitted to five IEEE Performance Evaluation of Tracking and Surveillance (PETS) workshops. The evaluation was carried out using well established metrics developed in the Video Analysis and Content Extraction (VACE) programme and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The comparative evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness and provides a brief analysis of the metrics themselves to provide further insights into the performance of the authors’ systems.
Resumo:
The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.
Resumo:
This paper presents the results of the crowd image analysis challenge of the Winter PETS 2009 workshop. The evaluation is carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium [13]. The evaluation highlights the detection and tracking performance of the authors’systems in areas such as precision, accuracy and robustness. The performance is also compared to the PETS 2009 submitted results.
Resumo:
This paper presents the results of the crowd image analysis challenge of the PETS2010 workshop. The evaluation was carried out using a selection of the metrics developed in the Video Analysis and Content Extraction (VACE) program and the CLassification of Events, Activities, and Relationships (CLEAR) consortium. The PETS 2010 evaluation was performed using new ground truthing create from each independant two dimensional view. In addition, the performance of the submissions to the PETS 2009 and Winter-PETS 2009 were evaluated and included in the results. The evaluation highlights the detection and tracking performance of the authors’ systems in areas such as precision, accuracy and robustness.
Resumo:
The prediction of extratropical cyclones by the European Centre for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) Ensemble Prediction Systems (EPS) is investigated using a storm-tracking forecast verifica-tion methodology. The cyclones are identified and tracked along the forecast trajectories so that statistics can be generated to determine the rate at which the position and intensity of the forecasted cyclones diverge from the corresponding analysed cyclones with forecast time. Overall the ECMWF EPS has a slightly higher level of performance than the NCEP EPS. However, in the southern hemisphere the NCEP EPS has a slightly higher level of skill for the intensity of the storms. The results from both EPS indicate a higher level of predictive skill for the position of extratropical cyclones than their intensity and show that there is a larger spread in intensity than position. The results also illustrate several benefits an EPS can offer over a deterministic forecast.
Resumo:
An aggregated farm-level index, the Agri-environmental Footprint Index (AFI), based on multiple criteria methods and representing a harmonised approach to evaluation of EU agri-environmental schemes is described. The index uses a common framework for the design and evaluation of policy that can be customised to locally relevant agri-environmental issues and circumstances. Evaluation can be strictly policy-focused, or broader and more holistic in that context-relevant assessment criteria that are not necessarily considered in the evaluated policy can nevertheless be incorporated. The Index structure is flexible, and can respond to diverse local needs. The process of Index construction is interactive, engaging farmers and other relevant stakeholders in a transparent decision-making process that can ensure acceptance of the outcome, help to forge an improved understanding of local agri-environmental priorities and potentially increase awareness of the critical role of farmers in environmental management. The structure of the AFI facilitates post-evaluation analysis of relative performance in different dimensions of the agri-environment, permitting identification of current strengths and weaknesses, and enabling future improvement in policy design. Quantification of the environmental impact of agriculture beyond the stated aims of policy using an 'unweighted' form of the AFI has potential as the basis of an ongoing system of environmental audit within a specified agricultural context. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Garment information tracking is required for clean room garment management. In this paper, we present a camera-based robust system with implementation of Optical Character Reconition (OCR) techniques to fulfill garment label recognition. In the system, a camera is used for image capturing; an adaptive thresholding algorithm is employed to generate binary images; Connected Component Labelling (CCL) is then adopted for object detection in the binary image as a part of finding the ROI (Region of Interest); Artificial Neural Networks (ANNs) with the BP (Back Propagation) learning algorithm are used for digit recognition; and finally the system is verified by a system database. The system has been tested. The results show that it is capable of coping with variance of lighting, digit twisting, background complexity, and font orientations. The system performance with association to the digit recognition rate has met the design requirement. It has achieved real-time and error-free garment information tracking during the testing.
Resumo:
We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners, which operate on image intensity discriminative features that are defined on small patches and are fast to compute. A database that is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions, which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator, which requires a ribbon-like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2D delineation and of fast 3D tracking and compare its performance with other existing methods for line search boundary detection.