20 resultados para Total variability
em CentAUR: Central Archive University of Reading - UK
Resumo:
Automatic tracking of vorticity centers in European Centre for Medium-Range Weather Forecasts analyses has been used to develop a 20-yr climatology of African easterly wave activity. The tracking statistics at 600 and 850 mb confirm the complicated easterly wave structures present over the African continent. The rainy zone equatorward of 15 degreesN is dominated by 600-mb activity, and the much drier Saharan region poleward of 15 degreesN is more dominated by 850-mb activity. Over the Atlantic Ocean there is just one storm track with the 600- and 850-mb wave activity collocated. Based on growth/decay and genesis statistics, it appears that the 850-mb waves poleward of 15 degreesN over land generally do not get involved with the equatorward storm track over the ocean. Instead, there appears to be significant development of 850-mb activity at the West African coast in the rainy zone around (10 degreesN, 10 degreesW), which, it is proposed, is associated with latent heat release. Based on the tracking statistics, it has been shown that there is marked interannual variability in African easterly wave (AEW) activity. It is especially marked at the 850-mb level at the West African coast between about 10 degrees and 15 degreesN, where the coefficient of variation is 0.29. For the period between 1985 and 1998, a notable positive correlation is seen between this AEW activity and Atlantic tropical cyclone activity. This correlation is particularly strong for the postreanalysis period between 1994 and 1998. This result suggests that Atlantic tropical cyclone activity may be influenced by the number of AEWs leaving the West African coast, which have significant low-level amplitudes, and not simply by the total number of AEWs.
Resumo:
Gridded monthly precipitation data for 1979-2006 from the Global Precipitation Climatology Project are used to investigate interannual summer precipitation variability over Europe and its links to regional atmospheric circulation and evaporation. The first empirical orthogonal function (EOF) mode of European precipitation, explaining 17.2%-22.8% of its total variance, is stable during the summer season and is associated with the North Atlantic Oscillation. The spatialtemporal structure of the second EOF mode is less stable and shows monthtomonth variations during the summer season. This mode is linked to the Scandinavian teleconnection pattern. Analysis of links between leading EOF modes of regional precipitation and evaporation has revealed a significant link between precipitation and evaporation from the European land surface, thus, indicating an important role of the local processes in summertime precipitation variability over Europe. Weaker, but statistically significant links have been found for evaporation from the surface of the Mediterranean and Baltic Seas. Finally, in contrast to winter, no significant links have been revealed between European precipitation and evaporation in the North Atlantic during the summer season.
Resumo:
In the 1960s, Jacob Bjerknes suggested that if the top-of-the-atmosphere (TOA) fluxes and the oceanic heat storage did not vary too much, then the total energy transport by the climate system would not vary too much either. This implies that any large anomalies of oceanic and atmospheric energy transport should be equal and opposite. This simple scenario has become known as Bjerknes compensation. A long control run of the Third Hadley Centre Coupled Ocean-Atmosphere General Circulation Model (HadCM3) has been investigated. It was found that northern extratropical decadal anomalies of atmospheric and oceanic energy transports are significantly anticorrelated and have similar magnitudes, which is consistent with the predictions of Bjerknes compensation. ne degree of compensation in the northern extratropics was found to increase with increasing, time scale. Bjerknes compensation did not occur in the Tropics, primarily as large changes in the surface fluxes were associated with large changes in the TOA fluxes. In the ocean, the decadal variability of the energy transport is associated with fluctuations in the meridional overturning circulation in the Atlantic Ocean. A stronger Atlantic Ocean energy transport leads to strong warming of surface temperatures in the Greenland-Iceland-Norwegian (GIN) Seas. which results in a reduced equator-to-pole surface temperature gradient and reduced atmospheric baroclinicity. It is argued that a stronger Atlantic Ocean energy transport leads to a weakened atmospheric transient energy transport.
Resumo:
An annually laminated, uranium-series dated, Holocene stalagmite from southeast Ethiopia has been analysed for growth rate and δ13C and δ18O variations at annual to biennial resolution, in order to provide the first long duration proxy record of decadal-scale rainfall variability in this climatically sensitive region. Our study site (10°N) is climatically influenced by both summer (June—August) and spring (March—May) rainfall caused by the annual movement of the Inter-Tropical Convergence Zone (ITCZ) and modulated by large-scale anomalies in the atmospheric circulation and in ocean temperatures. Here we show that stalagmite growth, episodic throughout the last 7800 years, demonstrates decadal-scale (8—25 yr) variability in both growth rate and δ 18O. A hydrological model was employed and indicates that this decadal variability is due to variations in the relative amounts of rainfall in the two rain seasons. Our record, unique in its combination of length (a total of ~1000 years), annual chronology and high resolution δ18O, shows for the first time that such decadal-scale variability in rainfall in this region has occurred through the Holocene, which implies persistent decadal-scale variability for the large-scale atmospheric and oceanic driving factors.
Resumo:
The relationship between individual growth and acetylcholinesterase (AChE).activity was evaluated for Daphnia magna. Analysis on the influence of two different culture media on baseline AChE activity was performed with Daphnia similis. The results indicated an inverse relationship between D. magna body length and AChE activity. An increase in total protein, which was not proportional to an increase in the rate of the substrate hydrolysis (Delta absorbance/min), seems to be the reason for this inverse size versus AChE activity relationship. Therefore, toxicants such as phenobarbital, which affect protein and size but not AChE activity directly, have an overall affect on AChE activity. In contrast, the AChE inhibitor parathion altered AChE activity but not protein. Culture medium also had a significant affect on AChE activity in D. similis. Changes in total protein seem to be the main reason for the variations in baseline AChE activity in Daphnia observed in the different evaluations performed in this work. Therefore, AChE activity in Daphnia must be interpreted carefully, and variations related to changes in total protein must be taken into account when applying this enzyme as a biomarker in biological monitoring.
Resumo:
The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.
Resumo:
The development of the real estate swap market offers many opportunities for investors to adjust the exposure of their portfolios to real estate. A number of OTC transactions have been observed in markets around the world. In this paper we examine the Japanese commercial real estate market from the point of view of an investor holding a portfolio of properties seeking to reduce the portfolio exposure to the real estate market by swapping an index of real estate for LIBOR. This paper explores the practicalities of hedging portfolios comprising small numbers of individual properties against an appropriate index. We use the returns from 74 properties owned by Japanese Real Estate Investment Trusts over the period up to September 2007. The paper also discusses and applies the appropriate stochastic processes required to model real estate returns in this application and presents alternative ways of reporting hedging effectiveness. We find that the development of the derivative does provide the capacity for hedging market risk but that the effectiveness of the hedge varies considerably over time. We explore the factors that cause this variability.
Resumo:
Successful quantitative precipitation forecasts under convectively unstable conditions depend on the ability of the model to capture the location, timing and intensity of convection. Ensemble forecasts of two mesoscale convective outbreaks over the UK are examined with a view to understanding the nature and extent of their predictability. In addition to a control forecast, twelve ensemble members are run for each case with the same boundary conditions but with perturbations added to the boundary layer. The intention is to introduce perturbations of appropriate magnitude and scale so that the large-scale behaviour of the simulations is not changed. In one case, convection is in statistical equilibrium with the large-scale flow. This places a constraint on the total precipitation, but the location and intensity of individual storms varied. In contrast, the other case was characterised by a large-scale capping inversion. As a result, the location of individual storms was fixed, but their intensities and the total precipitation varied strongly. The ensemble shows case-to-case variability in the nature of predictability of convection in a mesoscale model, and provides additional useful information for quantitative precipitation forecasting.
Resumo:
Red meat consumption causes a dose-dependent increase in fecal apparent total N-nitroso compounds (ATNC). The genotoxic effects of these ATNCs were investigated using two different Comet assay protocols to determine the genotoxicity of fecal water samples. Fecal water samples were obtained from two studies of a total of 21 individuals fed diets containing different amounts of red meat, protein, heme, and iron. The first protocol incubated the samples with HT-29 cells for 5 min at 4 degrees C, whereas the second protocol used a longer exposure time of 30 min and a higher incubation temperature of 37 degrees C. DNA strand breaks were quantified by the tail moment (DNA in the comet tail multiplied by the comet tail length). The results of the two Comet assay protocols were significantly correlated (r = 0.35, P = 0.003), however, only the second protocol resulted in detectable levels of DNA damage. Inter-individual effects were variable and there was no effect on fecal water genotoxicity by diet (P > 0.20), mean transit time (P = 0.588), or weight (P = 0.705). However, there was a highly significant effect of age (P = 0.019). There was no significant correlation between concentrations of ATNCs in fecal homogenates and fecal water genotoxicity (r = 0.04, P = 0.74). ATNC levels were lower in fecal water samples (272 microg/kg) compared to that of fecal homogenate samples (895 microg/kg) (P < 0.0001). Failure to find dietary effects on fecal water genotoxicity may therefore be attributed to individual variability and low levels of ATNCs in fecal water samples.
Resumo:
Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean1. These links are extensive, influencing a range of climate processes such as hurricane activity2 and African Sahel3, 4, 5 and Amazonian5 droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations6, 7, 8, 9, 10. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures11, 12, but climate models have so far failed to reproduce these interactions6, 9 and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860–2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910–1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol–cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol–cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.
Resumo:
(ABR) is of fundamental importance to the investiga- tion of the auditory system behavior, though its in- terpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analyzing the ABR, clinicians are often interested in the identi- fication of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave la- tency) is a practical tool for the diagnosis of disorders affecting the auditory system. In this context, the aim of this research is to compare ABR manual/visual analysis provided by different examiners. Methods: The ABR data were collected from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). A total of 160 data samples were analyzed and a pair- wise comparison between four distinct examiners was executed. We carried out a statistical study aiming to identify significant differences between assessments provided by the examiners. For this, we used Linear Regression in conjunction with Bootstrap, as a me- thod for evaluating the relation between the responses given by the examiners. Results: The analysis sug- gests agreement among examiners however reveals differences between assessments of the variability of the waves. We quantified the magnitude of the ob- tained wave latency differences and 18% of the inves- tigated waves presented substantial differences (large and moderate) and of these 3.79% were considered not acceptable for the clinical practice. Conclusions: Our results characterize the variability of the manual analysis of ABR data and the necessity of establishing unified standards and protocols for the analysis of these data. These results may also contribute to the validation and development of automatic systems that are employed in the early diagnosis of hearing loss.
Resumo:
Abstract Background: The analysis of the Auditory Brainstem Response (ABR) is of fundamental importance to the investigation of the auditory system behaviour, though its interpretation has a subjective nature because of the manual process employed in its study and the clinical experience required for its analysis. When analysing the ABR, clinicians are often interested in the identification of ABR signal components referred to as Jewett waves. In particular, the detection and study of the time when these waves occur (i.e., the wave latency) is a practical tool for the diagnosis of disorders affecting the auditory system. Significant differences in inter-examiner results may lead to completely distinct clinical interpretations of the state of the auditory system. In this context, the aim of this research was to evaluate the inter-examiner agreement and variability in the manual classification of ABR. Methods: A total of 160 ABR data samples were collected, for four different stimulus intensity (80dBHL, 60dBHL, 40dBHL and 20dBHL), from 10 normal-hearing subjects (5 men and 5 women, from 20 to 52 years). Four examiners with expertise in the manual classification of ABR components participated in the study. The Bland-Altman statistical method was employed for the assessment of inter-examiner agreement and variability. The mean, standard deviation and error for the bias, which is the difference between examiners’ annotations, were estimated for each pair of examiners. Scatter plots and histograms were employed for data visualization and analysis. Results: In most comparisons the differences between examiner’s annotations were below 0.1 ms, which is clinically acceptable. In four cases, it was found a large error and standard deviation (>0.1 ms) that indicate the presence of outliers and thus, discrepancies between examiners. Conclusions: Our results quantify the inter-examiner agreement and variability of the manual analysis of ABR data, and they also allows for the determination of different patterns of manual ABR analysis.
Resumo:
Airborne high resolution in situ measurements of a large set of trace gases including ozone (O3) and total water (H2O) in the upper troposphere and the lowermost stratosphere (UT/LMS) have been performed above Europe within the SPURT project. SPURT provides an extensive data coverage of the UT/LMS in each season within the time period between November 2001 and July 2003. In the LMS a distinct spring maximum and autumn minimum is observed in O3, whereas its annual cycle in the UT is shifted by 2–3 months later towards the end of the year. The more variable H2O measurements reveal a maximum during summer and a minimum during autumn/winter with no phase shift between the two atmospheric compartments. For a comprehensive insight into trace gas composition and variability in the UT/LMS several statistical methods are applied using chemical, thermal and dynamical vertical coordinates. In particular, 2-dimensional probability distribution functions serve as a tool to transform localised aircraft data to a more comprehensive view of the probed atmospheric region. It appears that both trace gases, O3 and H2O, reveal the most compact arrangement and are best correlated in the view of potential vorticity (PV) and distance to the local tropopause, indicating an advanced mixing state on these surfaces. Thus, strong gradients of PV seem to act as a transport barrier both in the vertical and the horizontal direction. The alignment of trace gas isopleths reflects the existence of a year-round extra-tropical tropopause transition layer. The SPURT measurements reveal that this layer is mainly affected by stratospheric air during winter/spring and by tropospheric air during autumn/summer. Normalised mixing entropy values for O3 and H2O in the LMS appear to be maximal during spring and summer, respectively, indicating highest variability of these trace gases during the respective seasons.
Resumo:
An initial validation of the Along Track Scanning Radiometer (ATSR) Reprocessing for Climate (ARC) retrievals of sea surface temperature (SST) is presented. ATSR-2 and Advanced ATSR (AATSR) SST estimates are compared to drifting buoy and moored buoy observations over the period 1995 to 2008. The primary ATSR estimates are of skin SST, whereas buoys measure SST below the surface. Adjustment is therefore made for the skin effect, for diurnal stratification and for differences in buoy–satellite observation time. With such adjustments, satellite-in situ differences are consistent between day and night within ~ 0.01 K. Satellite-in situ differences are correlated with differences in observation time, because of the diurnal warming and cooling of the ocean. The data are used to verify the average behaviour of physical and empirical models of the warming/cooling rates. Systematic differences between adjusted AATSR and in-situ SSTs against latitude, total column water vapour (TCWV), and wind speed are less than 0.1 K, for all except the most extreme cases (TCWV < 5 kg m–2, TCWV > 60 kg m–2). For all types of retrieval except the nadir-only two-channel (N2), regional biases are less than 0.1 K for 80% of the ocean. Global comparison against drifting buoys shows night time dual-view two-channel (D2) SSTs are warm by 0.06 ± 0.23 K and dual-view three-channel (D3) SSTs are warm by 0.06 ± 0.21 K (day-time D2: 0.07 ± 0.23 K). Nadir-only results are N2: 0.03 ± 0.33 K and N3: 0.03 ± 0.19 K showing the improved inter-algorithm consistency to ~ 0.02 K. This represents a marked improvement from the existing operational retrieval algorithms for which inter-algorithm inconsistency is > 0.5 K. Comparison against tropical moored buoys, which are more accurate than drifting buoys, gives lower error estimates (N3: 0.02 ± 0.13 K, D2: 0.03 ± 0.18 K). Comparable results are obtained for ATSR-2, except that the ATSR-2 SSTs are around 0.1 K warm compared to AATSR
Resumo:
The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry–climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the effects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogen-induced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.