5 resultados para Tomaso Vitali

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rifaximin, a rifamycin derivative, has been reported to induce clinical remission of active Crohn's disease (CD), a chronic inflammatory bowel disorder. In order to understand how rifaximin affects the colonic microbiota and its metabolism, an in vitro human colonic model system was used in this study. We investigated the impact of the administration of 1800 mg/day of rifaximin on the faecal microbiota of four patients affected by colonic active CD [Crohn's disease activity index (CDAI > 200)] using a continuous culture colonic model system. We studied the effect of rifaximin on the human gut microbiota using fluorescence in situ hybridization, quantitative PCR and PCR–denaturing gradient gel electrophoresis. Furthermore, we investigated the effect of the antibiotic on microbial metabolic profiles, using 1H-NMR and solid phase microextraction coupled with gas chromatography/mass spectrometry, and its potential genotoxicity and cytotoxicity, using Comet and growth curve assays. Rifaximin did not affect the overall composition of the gut microbiota, whereas it caused an increase in concentration of Bifidobacterium, Atopobium and Faecalibacterium prausnitzii. A shift in microbial metabolism was observed, as shown by increases in short-chain fatty acids, propanol, decanol, nonanone and aromatic organic compounds, and decreases in ethanol, methanol and glutamate. No genotoxicity or cytotoxicity was attributed to rifaximin, and conversely rifaximin was shown to have a chemopreventive role by protecting against hydrogen peroxide-induced DNA damage. We demonstrated that rifaximin, while not altering the overall structure of the human colonic microbiota, increased bifidobacteria and led to variation of metabolic profiles associated with potential beneficial effects on the host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total ozone trends are typically studied using linear regression models that assume a first-order autoregression of the residuals [so-called AR(1) models]. We consider total ozone time series over 60°S–60°N from 1979 to 2005 and show that most latitude bands exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation functions decay by a power law rather than exponentially as in AR(1). At such latitudes the uncertainties of total ozone trends are greater than those obtained from AR(1) models and the expected time required to detect ozone recovery correspondingly longer. We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes (45°–60°S), where the long-term ozone decline attributable to anthropogenic chlorine is the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this region (especially the highest latitudes, and especially the South Atlantic) is the optimal location for the detection of ozone recovery, with a statistically significant ozone increase attributable to chlorine likely to be detectable by the end of the next decade. In northern middle and high latitudes, on the other hand, there is clear evidence of LRC behavior. This increases the uncertainties on the long-term trend attributable to anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect ozone recovery by a similar amount (from ∼2030 to ∼2045). If the long-term changes in ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine loading, then the strong decrease of northern middle- and high-latitude ozone during the first half of the 1990s and its subsequent increase in the second half of the 1990s projects more strongly on the trend and makes a smaller contribution to the noise. This both increases the trend and weakens the LRC behavior at these latitudes, to the extent that ozone recovery (according to this model, and in the sense of a statistically significant ozone increase) is already on the verge of being detected. The implications of this rather controversial interpretation are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The statistical relationship between springtime and summertime ozone over middle and polar latitudes is analyzed using zonally averaged total ozone data. Shortterm variations in springtime midlatitude ozone demonstrate only a modest correlation with springtime polar ozone variations. However by early summer, ozone variations throughout the extratropics are highly correlated. Analysis of correlation functions indicates that springtime midlatitude ozone, not polar ozone, is the best predictor for summertime polar ozone. Long-term total ozone trends at middle and high latitudes are also different for spring and nearly identical for summer. About 39% of the observed southern midlatitude ozone decline in December can be attributed to the polar ozone depletion up to November. In the Northern Hemisphere, the corresponding contribution is about 15%, but the error bars are too large to make an accurate estimate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stratospheric ozone has been depleted over the last 25 years following anthropogenic emissions of a number of chlorine- and bromine-containing compounds (ozone-depleting substances, ODSs), which are now regulated under the Montreal Protocol. The Protocol has been effective in controlling the net growth of these compounds in the atmosphere. As chlorine and bromine slowly decrease in the future, ozone levels are expected to increase in the coming decades, although the evolution will also depend on the changing climate system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temporal autocorrelations of monthly mean total ozone anomalies over the 35–60°S and 35–60°N latitude bands reveal that anomalies established in the wintertime midlatitude ozone buildup persist (with photochemical decay) until the end of the following autumn, and then are rapidly erased once the next winter's buildup begins. The photochemical decay rate is found to be identical between the two hemispheres. High predictability of ozone through late summer exists based on the late-spring values. In the northern hemisphere, extending the 1979–2001 springtime ozone trend to other months through regression based on the seasonal persistence of anomalies captures the seasonality of the ozone trends remarkably well. In the southern hemisphere, the springtime trend only accounts for part of the summertime trends. There is a strong correlation between the ozone anomalies in northern hemisphere spring and those in the subsequent southern hemisphere spring, but not the converse.