49 resultados para Timber Poles
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper uses spatial economic data from four small English towns to measure the strength of economic integration between town and hinterland and to estimate the magnitude of town-hinterland spill-over effects. Following estimation of local integration indicators and inter-locale flows, sub-regional social accounting matrices (SAMs) are developed to estimate the strength of local employment and output multipliers for various economic sectors. The potential value of a town as a 'sub-pole' in local economic development is shown to be dependent on structural differences in the local economy, such as the particular mix of firms within towns. Although the multipliers are generally small, indicating a low level of local linkages, some sectors, particularly financial services and banking, show consistently higher multipliers for both output and employment. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The presence of mismatch between controller and system is considered. A novel discrete-time approach is used to investigate the migration of closed-loop poles when this mismatch occurs. Two forms of state estimator are employed giving rise to several interesting features regarding stability and performance.
Resumo:
This paper examines the interaction of spatial and dynamic aspects of resource extraction from forests by local people. Highly cyclical and varied across space and time, the patterns of resource extraction resulting from the spatial–temporal model bear little resemblance to the patterns drawn from focusing either on spatial or temporal aspects of extraction alone. Ignoring this variability inaccurately depicts villagers’ dependence on different parts of the forest and could result in inappropriate policies. Similarly, the spatial links in extraction decisions imply that policies imposed in one area can have unintended consequences in other areas. Combining the spatial–temporal model with a measure of success in community forest management—the ability to avoid open-access resource degradation—characterizes the impact of incomplete property rights on patterns of resource extraction and stocks.
Resumo:
Patterns of forest cover and forest degradation determine the size and types of ecosystem services forests provide. Particularly in low-income countries, nontimber forest product (NTFP) extraction by rural people, which provides important resources and income to the rural poor, contributes to the level and pattern of forest degradation. Although recent policy, particularly in Africa, emphasizes forest degradation, relatively little research describes the spatial aspects of NTFP collection that lead to spatial degradation patterns. This paper reviews both the spatial empirical work on NTFP extraction and related forest degradation patterns, and spatial models of behavior of rural people who extract NTFPs from forest. Despite the impact of rural people's behavior on resulting quantities and patterns of forest resources, spatial–temporal models/patterns rarely inform park siting and sizing decisions, econometric assessments of park effectiveness, development projects to support conservation, or REDD protocols. Using the literature review as a lens, we discuss the models' implications for these policies with particular emphasis on effective conservation spending and leakage.
Resumo:
When villagers extract resources, such as fuelwood, fodder, or medicinal plants from forests, their decisions over where and how much to extract are influenced by market conditions, their particular opportunity costs of time, minimum consumption needs, and access to markets. This paper develops an optimization model of villagers’ extraction behavior that clarifies how, and under what conditions, policies that create incentives such as improved returns to extraction in a buffer zone might be used instead of adversarial enforcement efforts to protect a forest’s pristine ‘‘inner core.’’
Resumo:
Forests are a store of carbon and an eco-system that continually removes carbon dioxide from the atmosphere. If they are sustainably managed, the carbon store can be maintained at a constant level, while the trees removed and converted to timber products can form an additional long term carbon store. The total carbon store in the forest and associated ‘wood chain’ therefore increases over time, given appropriate management. This increasing carbon store can be further enhanced with afforestation. The UK’s forest area has increased continually since the early 1900s, although the rate of increase has declined since its peak in the late 1980s, and it is a similar picture in the rest of Europe. The increased sustainable use of timber in construction is a key market incentive for afforestation, which can make a significant contribution to reducing carbon emissions. The case study presented in this paper demonstrates the carbon benefits of a Cross Laminated Timber (CLT) solution for a multi-storey residential building in comparison with a more conventional reinforced concrete solution. The embodied carbon of the building up to completion of construction is considered, together with the stored carbon during the life of the building and the impact of different end of life scenarios. The results of the study show that the total stored carbon in the CLT structural frame is 1215tCO2 (30tCO2 per housing unit). The choice of treatment at end of life has a significant effect on the whole life embodied carbon of the CLT frame, which ranges from -1017 tCO2e for re-use to +153tCO2e for incinerate without energy recovery. All end of life scenarios considered result in lower total CO2e emissions for the CLT frame building compared with the reinforced concrete frame solution.
Resumo:
Determining the internal layout of archaeological structures and their uses has always been challenging, particularly in timber-framed or earthen walled buildings where doorways and divisions are difficult to trace. In temperate conditions however, soil formation processes may hold the key to understanding how buildings were used. The abandoned Roman town of Silchester, UK, provides a perfect case study for testing a new approach combining experimental archaeology and micromorphology. The results show that this technique can resolve previously uncertain features of urban architecture such as the presence of a roof and the changes in internal organisation and use over time.
Resumo:
The prediction of extratropical cyclones by the European Centre for Medium Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) Ensemble Prediction Systems (EPS) has been investigated using an objective feature tracking methodology to identify and track the cyclones along the forecast trajectories. Overall the results show that the ECMWF EPS has a slightly higher level of skill than the NCEP EPS in the northern hemisphere (NH). However in the southern hemisphere (SH), NCEP has higher predictive skill than ECMWF for the intensity of the cyclones. The results from both EPS indicate a higher level of predictive skill for the position of extratropical cyclones than their intensity and show that there is a larger spread in intensity than position. Further analysis shows that the predicted propagation speed of cyclones is generally too slow for the ECMWF EPS and show a slight bias for the intensity of the cyclones to be overpredicted. This is also true for the NCEP EPS in the SH. For the NCEP EPS in the NH the intensity of the cyclones is underpredicted. There is small bias in both the EPS for the cyclones to be displaced towards the poles. For each ensemble forecast of each cyclone, the predictive skill of the ensemble member that best predicts the cyclones position and intensity was computed. The results are very encouraging showing that the predictive skill of the best ensemble member is significantly higher than that of the control forecast in terms of both the position and intensity of the cyclones. The prediction of cyclones before they are identified as 850 hPa vorticity centers in the analysis cycle was also considered. It is shown that an indication of extratropical cyclones can be given by at least 1 ensemble member 7 days before they are identified in the analysis. Further analysis of the ECMWF EPS shows that the ensemble mean has a higher level of skill than the control forecast, particularly for the intensity of the cyclones, 2 from day 3 of the forecast. There is a higher level of skill in the NH than the SH and the spread in the SH is correspondingly larger. The difference between the ensemble mean and spread is very small for the position of the cyclones, but the spread of the ensemble is smaller than the ensemble mean error for the intensity of the cyclones in both hemispheres. Results also show that the ECMWF control forecast has ½ to 1 day more skill than the perturbed members, for both the position and intensity of the cyclones, throughout the forecast.
Resumo:
The Perthshire stone circle of Croft Moraig was excavated 40 years ago and is usually taken to illustrate the classic sequence at such monuments in Britain. A timber setting, accompanied by a shallow ditch, was replaced by two successive stone settings. The pottery associated with the earliest construction was dated to the Neolithic period. A new analysis of the excavated material suggests that, in fact, the ceramics are Middle or Late Bronze Age. They provide a terminus post quem for at least one of the stone settings on the site. Further study of the evidence suggests an alternative sequence of construction at Croft Moraig, involving a change in the axis of the monument. It seems possible that other stone and timber circles were equally late in date and that their period of use in Britain and Ireland may have been longer than is generally supposed.
Resumo:
General circulation models (GCMs) use the laws of physics and an understanding of past geography to simulate climatic responses. They are objective in character. However, they tend to require powerful computers to handle vast numbers of calculations. Nevertheless, it is now possible to compare results from different GCMs for a range of times and over a wide range of parameterisations for the past, present and future (e.g. in terms of predictions of surface air temperature, surface moisture, precipitation, etc.). GCMs are currently producing simulated climate predictions for the Mesozoic, which compare favourably with the distributions of climatically sensitive facies (e.g. coals, evaporites and palaeosols). They can be used effectively in the prediction of oceanic upwelling sites and the distribution of petroleum source rocks and phosphorites. Models also produce evaluations of other parameters that do not leave a geological record (e.g. cloud cover, snow cover) and equivocal phenomena such as storminess. Parameterisation of sub-grid scale processes is the main weakness in GCMs (e.g. land surfaces, convection, cloud behaviour) and model output for continental interiors is still too cold in winter by comparison with palaeontological data. The sedimentary and palaeontological record provides an important way that GCMs may themselves be evaluated and this is important because the same GCMs are being used currently to predict possible changes in future climate. The Mesozoic Earth was, by comparison with the present, an alien world, as we illustrate here by reference to late Triassic, late Jurassic and late Cretaceous simulations. Dense forests grew close to both poles but experienced months-long daylight in warm summers and months-long darkness in cold snowy winters. Ocean depths were warm (8 degrees C or more to the ocean floor) and reefs, with corals, grew 10 degrees of latitude further north and south than at the present time. The whole Earth was warmer than now by 6 degrees C or more, giving more atmospheric humidity and a greatly enhanced hydrological cycle. Much of the rainfall was predominantly convective in character, often focused over the oceans and leaving major desert expanses on the continental areas. Polar ice sheets are unlikely to have been present because of the high summer temperatures achieved. The model indicates extensive sea ice in the nearly enclosed Arctic seaway through a large portion of the year during the late Cretaceous, and the possibility of sea ice in adjacent parts of the Midwest Seaway over North America. The Triassic world was a predominantly warm world, the model output for evaporation and precipitation conforming well with the known distributions of evaporites, calcretes and other climatically sensitive facies for that time. The message from the geological record is clear. Through the Phanerozoic, Earth's climate has changed significantly, both on a variety of time scales and over a range of climatic states, usually baldly referred to as "greenhouse" and "icehouse", although these terms disguise more subtle states between these extremes. Any notion that the climate can remain constant for the convenience of one species of anthropoid is a delusion (although the recent rate of climatic change is exceptional). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We separate and quantify the sources of uncertainty in projections of regional (*2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes. For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead. Model uncertainty is generally the dominant source of uncertainty for longer lead times. Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century. For the global mean, model uncertainty dominates at all lead times. The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections. In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation. We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades. This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation. The potential to narrow uncertainty in regional temperature projections is far greater. These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean. Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here.
Resumo:
The Grey-necked Picathartes Picathartes oreas, considered 'Vulnerable', is an enigmatic ground-dwelling bird endemic to the central African equatorial rainforest and belongs to a family of only two species. Its distribution extends to the two Endemic Bird Areas within Cameroon (Guinea Congo forest biome and Cameroon mountain arc) and its population is thought to be in decline throughout its range due to increasing habitat fragmentation and disturbance. During March-April 2003 and June and October 2007 we surveyed Grey-necked Picathartes in the north-western region of the Mbam Minkom Mountain Forest. In January-March 2006 we surveyed the entire mountain range and found go breeding and 24 potential breeding sites, mostly located on the western slopes. From the complete survey, we estimated the population at 44 breeding individuals. Populations were highest in the north-west region but had apparently declined from 40 breeding individuals in 2003 to 20 in 2007. This region accounted for 41% of the entire population on the mountain range during the 2006 survey. The Mbam Minkom/Kala Important Bird Area was designated based on the presence of Grey-necked Picathartes but is under high pressure of imminent destruction from agricultural encroachment and illegal timber exploitation. These results have important implications for decision making in delimiting forest boundaries and core areas for protection in the development of management plans. We suggest possible remedial actions, appropriate repeatable methods for future monitoring and opportunities for community involvement in the management and conservation of the site.