116 resultados para Tidal range
em CentAUR: Central Archive University of Reading - UK
Resumo:
The paper describes a method whereby the distribution of fatigue damage along riser tensioner ropes is calculated, taking account of heave motion, set tension, system geometry, tidal range and rope specification. From these data the distribution of damage along the rope is calculated for a given time period using a Miner’s summation method. This information can then be used to help the operator decide on the length of rope to ‘slip and cut’ whereby a length from the end of the rope is removed and the rope moved through the system from a storage drum such that sections of rope that have already suffered significant fatigue damage are not moved to positions where there is another peak in the distribution. There are two main advantages to be gained by using the fatigue damage model. The first is that it shows the amount of fatigue damage accumulating at different points along the rope, enabling the most highly damaged section to be removed well before failure. The second is that it makes for greater efficiency, as damage can be spread more evenly along the rope over time, avoiding the need to scrap long sections of undamaged rope.
Resumo:
The study of the morphodynamics of tidal channel networks is important because of their role in tidal propagation and the evolution of salt-marshes and tidal flats. Channel dimensions range from tens of metres wide and metres deep near the low water mark to only 20-30cm wide and 20cm deep for the smallest channels on the marshes. The conventional method of measuring the networks is cumbersome, involving manual digitising of aerial photographs. This paper describes a semi-automatic knowledge-based network extraction method that is being implemented to work using airborne scanning laser altimetry (and later aerial photography). The channels exhibit a width variation of several orders of magnitude, making an approach based on multi-scale line detection difficult. The processing therefore uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels using a distance-with-destination transform. Breaks in the networks are repaired by extending channel ends in the direction of their ends to join with nearby channels, using domain knowledge that flow paths should proceed downhill and that any network fragment should be joined to a nearby fragment so as to connect eventually to the open sea.
Resumo:
[1] Temperature and ozone observations from the Microwave Limb Sounder (MLS) on the EOS Aura satellite are used to study equatorial wave activity in the autumn of 2005. In contrast to previous observations for the same season in other years, the temperature anomalies in the middle and lower tropical stratosphere are found to be characterized by a strong wave-like eastward progression with zonal wave number equal to 3. Extended empirical orthogonal function (EOF) analysis reveals that the wave 3 components detected in the temperature anomalies correspond to a slow Kelvin wave with a period of 8 days and a phase speed of 19 m/s. Fluctuations associated with this Kelvin wave mode are also apparent in ozone profiles. Moreover, as expected by linear theory, the ozone fluctuations observed in the lower stratosphere are in phase with the temperature perturbations, and peak around 20–30 hPa where the mean ozone mixing ratios have the steepest vertical gradient. A search for other Kelvin wave modes has also been made using both the MLS observations and the analyses from one experiment where MLS ozone profiles are assimilated into the European Centre for Medium-Range Weather Forecasts (ECMWF) data assimilation system via a 6-hourly 3D var scheme. Our results show that the characteristics of the wave activity detected in the ECMWF temperature and ozone analyses are in good agreement with MLS data.
Resumo:
A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by three different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, was used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume was investigated using in situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18% in O3 production and 24% in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume toward Europe. The predicted O3 changes are very dependent on temperature changes during transport and also on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutant levels in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume were also compared in order to evaluate the photochemistry in the model. Observed slopes change from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is well reproduced by multiple model runs even if slope values are slightly underestimated suggesting a small underestimation in modeled photochemical O3 production. The possible impact of this biomass burning plume on O3 levels in the European boundary layer was also examined by running the model for a further 5 days and comparing with data collected at surface sites, such as Jungfraujoch, which showed small O3 increases and elevated CO levels. The model predicts significant changes in O3 over the entire 10 day period due to photochemistry but the signal is largely lost because of the effects of dilution. However, measurements in several other BB plumes over Europe show that O3 impact of Alaskan fires can be potentially significant over Europe.
Resumo:
The diffuse and regular reflectances of five optically absorbing coatings frequently used in optical systems, were measured over the 0.32-14.3 mu m wavelength range, before and after exposure to heat and intense optical radiation. The measured coatings included Nextel Velvet Black, an anodised coating and NPL Super Black. The anodised coating exhibited substantial variations in its diffuse and regular reflectance values after thermal and simulated solar ageing. Solar and thermal ageing of the Nextel Velvet Black resulted in increases of its reflectance. However, thermal ageing tended to decrease the reflectance of the other paint samples examined. Thermal and solar ageing of the NPL Super Black resulted in only minor changes in its reflectance characteristics. All measurements are traceable to the UK National Standards.
Resumo:
We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A ‘range test’ for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533–547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhäuser, Basel, 1986, pp. 93–102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Göttingen, 1999]. In particular, we propose a new version of the Kirsch–Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.
Resumo:
We use an empirical statistical model to demonstrate significant skill in making extended-range forecasts of the monthly-mean Arctic Oscillation (AO). Forecast skill derives from persistent circulation anomalies in the lowermost stratosphere and is greatest during boreal winter. A comparison to the Southern Hemisphere provides evidence that both the time scale and predictability of the AO depend on the presence of persistent circulation anomalies just above the tropopause. These circulation anomalies most likely affect the troposphere through changes to waves in the upper troposphere, which induce surface pressure changes that correspond to the AO.
Resumo:
The radiation budget simulated by the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis (ERA40) is evaluated for the period 1979–2001 using independent satellite data and additional model data. This provides information on the quality of the radiation products and indirect evaluation of other aspects of the climate produced by ERA40. The climatology of clear-sky outgoing longwave radiation (OLR) is well captured by ERA40. Underestimations of about 10 W m−2 in clear-sky OLR over tropical convective regions by ERA40 compared to satellite data are substantially reduced when the satellite sampling is taken into account. The climatology of column-integrated water vapor is well simulated by ERA40 compared to satellite data over the ocean, indicating that the simulation of downward clear-sky longwave fluxes at the surface is likely to be good. Clear-sky absorbed solar radiation (ASR) and clear-sky OLR are overestimated by ERA40 over north Africa and high-latitude land regions. The observed interannual changes in low-latitude means are not well reproduced. Using ERA40 to analyze trends and climate feedbacks globally is therefore not recommended. The all-sky radiation budget is poorly simulated by ERA40. OLR is overestimated by around 10 W m−2 over much of the globe. ASR is underestimated by around 30 W m−2 over tropical ocean regions. Away from marine stratocumulus regions, where cloud fraction is underestimated by ERA40, the poor radiation simulation by ERA40 appears to be related to inaccurate radiative properties of cloud rather than inaccurate cloud distributions.
Resumo:
We compare European Centre for Medium-Range Weather Forecasts 15-year reanalysis (ERA-15) moisture over the tropical oceans with satellite observations and the U.S. National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research 40-year reanalysis. When systematic differences in moisture between the observational and reanalysis data sets are removed, the NCEP data show excellent agreement with the observations while the ERA-15 variability exhibits remarkable differences. By forcing agreement between ERA-15 column water vapor and the observations, where available, by scaling the entire moisture column accordingly, the height-dependent moisture variability remains unchanged for all but the 550–850 hPa layer, where the moisture variability reduces significantly. Thus the excess variation of column moisture in ERA-15 appears to originate in this layer. The moisture variability provided by ERA-15 is not deemed of sufficient quality for use in the validation of climate models.
Resumo:
Concentrations of peroxy radicals (HO2+ΣiRiO2) in addition to other trace gases were measured onboard the UK Meteorological Office/Natural Environment Research Council British Aerospace 146-300 atmospheric research aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign based at Horta Airport, Faial, Azores (38.58° N, 28.72° W) in July/August 2004. The overall peroxy radical altitude profile displays an increase with altitude that is likely to have been impacted by the effects of long-range transport. The peroxy radical altitude profile for air classified as of marine origin shows no discernable altitude profile. A range of air-masses were intercepted with varying source signatures, including those with aged American and Asian signatures, air-masses of biomass burning origin, and those that originated from the east coast of the United States. Enhanced peroxy radical concentrations have been observed within this range of air-masses indicating that long-range transported air-masses traversing the Atlantic show significant photochemical activity. The net ozone production at clear sky limit is in general negative, and as such the summer mid-Atlantic troposphere is at limit net ozone destructive. However, there is clear evidence of positive ozone production even at clear sky limit within air masses undergoing long-range transport, and during ITOP especially between 5 and 5.5 km, which in the main corresponds to a flight that extensively sampled air with a biomass burning signature. Ozone production was NOx limited throughout ITOP, as evidenced by a good correlation (r2=0.72) between P(O3) and NO. Strong positive net ozone production has also been seen in varying source signature air-masses undergoing long-range transport, including but not limited to low-level export events, and export from the east coast of the United States.
Resumo:
Four perfluorocarbon tracer dispersion experiments were carried out in central London, United Kingdom in 2004. These experiments were supplementary to the dispersion of air pollution and penetration into the local environment (DAPPLE) campaign and consisted of ground level releases, roof level releases and mobile releases; the latter are believed to be the first such experiments to be undertaken. A detailed description of the experiments including release, sampling, analysis and wind observations is given. The characteristics of dispersion from the fixed and mobile sources are discussed and contrasted, in particular, the decay in concentration levels away from the source location and the additional variability that results from the non-uniformity of vehicle speed. Copyright © 2009 Royal Meteorological Society
Resumo:
The improved empirical understanding of silt facies in Holocene coastal sequences provided by such as diatom, foraminifera, ostracode and testate amoebae analysis, combined with insights from quantitative stratigraphic and hydraulic simulations, has led to an inclusive, integrated model for the palaeogeomorphology, stratigraphy, lithofacies and biofacies of northwest European Holocene coastal lowlands in relation to sea-level behaviour. The model covers two general circumstances and is empirically supported by a range of field studies in the Holocene deposits of a number of British estuaries, particularly, the Severn. Where deposition was continuous over periods of centuries to millennia, and sea level fluctuated about a rising trend, the succession consists of repeated cycles of silt and peat lithofacies and biofacies in which series of transgressive overlaps (submergence sequences) alternate with series of regressive overlaps (emergence sequences) in association with the waxing and waning of tidal creek networks. Environmental and sea-level change are closely coupled, and equilibrium and secular pattern is of the kind represented ideally by a closed limit cycle. In the second circumstance, characteristic of unstable wetland shores and generally affecting smaller areas, coastal erosion ensures that episodes of deposition in the high intertidal zone last no more than a few centuries. The typical response is a series of regressive overlaps (emergence sequence) in erosively based high mudflat and salt-marsh silts that record, commonly as annual banding, exceptionally high deposition rates and a state of strong disequilibrium. Environmental change, including creek development, and sea-level movement are uncoupled. Only if deposition proceeds for a sufficiently long period, so that marshes mature, are equilibrium and close coupling regained. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Holocene tidal palaoechannels, Severn Estuary Levels, UK: a search for granulometric and foraminiferal criteria. Proceedings of the Geologists' Association, 117, 329-344. Grain-size characteristics (by laser granulometry) and foraminiferal assemblages have been established for silts accumulated in five, dissimilar tidal palaeochannels of mid or late Holocene age in the Severn Estuary Levels, representative of muddy tidal systems. For purposes of general comparison, similar data were obtained from a representative active tidal inlet in the area, but all of these channels have been subject to human interference and are not relied upon as a model for environmental interpretation. Although the palaeochannel deposits differ substantially in their bedding characteristics and stratigraphical relationships from the level-bedded salt-marsh platform and mudflat deposits with which they are associated, and although the channel environment is distinctive morphologically and hydraulically, no critical textural differences could be found between the channel deposits and the associated facies. Similarly, no foraminiferal assemblages distinctive of a tidal channel were encountered. Instead, the assemblages compare with those from mudflats and salt-marsh platforms. It is concluded that the sides of the subfossil channels carried some vegetation, as was observed to be the case in the modern inlet. An alternative approach is necessary if concealed palaeochannel deposits are to be recognized in muddy systems from limited numbers of subsurface samples. Although the palaeochannels afforded no characteristic textural signature, they yield transverse grain-size patterns pointing to coastal movements during their evolution. Concave-up trends suggest outward coastal building, whereas convex-up ones point to marsh-edge retreat.