48 resultados para Three Dimensional Graphics and Realism

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interpretation of soil water dynamics under drip irrigation systems is relevant for crop production as well as on water use and management. In this study a three-dimensional representation of the flow of water under drip irrigation is presented. The work includes analysis of the water balance at point scale as well as area-average, exploring uncertainties in water balance estimations depending on the number of locations sampled. The water flow was monitored by detailed profile water content measurements before irrigation, after irrigation and 24 h later with a dense array of soil moisture access tubes radially distributed around selected drippers. The objective was to develop a methodology that could be used on selected occasions to obtain 'snap shots' of the detailed three-dimensional patterns of soil moisture. Such patterns are likely to be very complex, as spatial variability will be induced for a number of reasons, such as strong horizontal gradients in soil moisture, variations between individual sources in the amount of water applied and spatial variability is soil hydraulic properties. Results are compared with a widely used numerical model, Hydrus-2D. The observed dynamic of the water content distribution is in good agreement with model simulations, although some discrepancies concerning the horizontal distribution of the irrigation bulb are noted due to soil heterogeneity. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a novel numerical method at unprecedented resolution, we demonstrate that structures of small to intermediate scale in rotating, stratified flows are intrinsically three-dimensional. Such flows are characterized by vortices (spinning volumes of fluid), regions of large vorticity gradients, and filamentary structures at all scales. It is found that such structures have predominantly three-dimensional dynamics below a horizontal scale LLR, where LR is the so-called Rossby radius of deformation, equal to the characteristic vertical scale of the fluid H divided by the ratio of the rotational and buoyancy frequencies f/N. The breakdown of two-dimensional dynamics at these scales is attributed to the so-called "tall-column instability" [D. G. Dritschel and M. de la Torre Juárez, J. Fluid. Mech. 328, 129 (1996)], which is active on columnar vortices that are tall after scaling by f/N, or, equivalently, that are narrow compared with LR. Moreover, this instability eventually leads to a simple relationship between typical vertical and horizontal scales: for each vertical wave number (apart from the vertically averaged, barotropic component of the flow) the average horizontal wave number is equal to f/N times the vertical wave number. The practical implication is that three-dimensional modeling is essential to capture the behavior of rotating, stratified fluids. Two-dimensional models are not valid for scales below LR. ©1999 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three supramolecular complexes of Co(II) using SCN-/SeCN- in combination with 4,4'-dipyridyl-N,N'-dioxide (dpyo), i.e., {[Co(SCN)(2)(dpyo)(2)].(dpyo)}(n) ( 1), {[Co(SCN)(2)(dpyo)(H2O)(2)].(H2O)}(n) ( 2), {[Co(SeCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 3), have been synthesized and characterized by single-crystal X-ray analysis. Complex 1 is a rare example of a dpyo bridged two-dimensional (2D) coordination polymer, and pi-stacked dpyo supramolecular rods are generated by the lattice dpyo, passing through the rhombic grid of stacked layers, resulting in a three-dimensional (3D) superstructure. Complexes 2 and 3 are isomorphous one-dimensional (1D) coordination polymers [-Co-dpyo-Co-] that undergo self-assembly leading to a bilayer architecture derived through an R-2(2)(8) H-bonding synthon between coordinated water and dpyo oxygen. A reinvestigation of coordination polymers [Mn(SCN)(2)(dpyo)( H2O)(MeOH)](n) ( 4) and {[Fe(SCN)(2)(dpyo)(H2O)(2)]center dot(H2O)}(n) ( 5) reported recently by our group [ Manna et al. Indian J. Chem. 2006, 45A, 1813] reveals brick wall topology rather than bilayer architecture is due to the decisive role of S center dot center dot center dot S/Se center dot center dot center dot Se interactions in determining the helical nature in 4 and 5 as compared to zigzag polymeric chains in 2 and 3, although the same R-2(2)(8) synthon is responsible for supramolecular assembly in these complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient method of combining neutron diffraction data over an extended Q range with detailed atomistic models is presented. A quantitative and qualitative mapping of the organization of the chain conformation in both glass and liquid phase has been performed. The proposed structural refinement method is based on the exploitation of the intrachain features of the diffraction pattern by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Models are built stochastically by assignment of these internal coordinates from probability distributions with limited variable parameters. Variation of these parameters is used in the construction of models that minimize the differences between the observed and calculated structure factors. A series of neutron scattering data of 1,4-polybutadiene at the region 20320 K is presented. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54 and 1.35 Å respectively. Valence angles of the backbone were found to be at 112 and 122.8 for the CCC and CC=C respectively. Three torsion angles corresponding to the double bond and the adjacent R and β bonds were found to occupy cis and trans, s(, trans and g( and trans states, respectively. We compare our results with theoretical predictions, computer simulations, RIS models, and previously reported experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During winter the ocean surface in polar regions freezes over to form sea ice. In the summer the upper layers of sea ice and snow melts producing meltwater that accumulates in Arctic melt ponds on the surface of sea ice. An accurate estimate of the fraction of the sea ice surface covered in melt ponds is essential for a realistic estimate of the albedo for global climate models. We present a melt-pond–sea-ice model that simulates the three-dimensional evolution of melt ponds on an Arctic sea ice surface. The advancements of this model compared to previous models are the inclusion of snow topography; meltwater transport rates are calculated from hydraulic gradients and ice permeability; and the incorporation of a detailed one-dimensional, thermodynamic radiative balance. Results of model runs simulating first-year and multiyear sea ice are presented. Model results show good agreement with observations, with duration of pond coverage, pond area, and ice ablation comparing well for both the first-year ice and multiyear ice cases. We investigate the sensitivity of the melt pond cover to changes in ice topography, snow topography, and vertical ice permeability. Snow was found to have an important impact mainly at the start of the melt season, whereas initial ice topography strongly controlled pond size and pond fraction throughout the melt season. A reduction in ice permeability allowed surface flooding of relatively flat, first-year ice but had little impact on the pond coverage of rougher, multiyear ice. We discuss our results, including model shortcomings and areas of experimental uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of ozone loss rates using a three-dimensional chemical transport model and a box model during recent Antarctic and Arctic winters are compared with experimental loss rates. The study focused on the Antarctic winter 2003, during which the first Antarctic Match campaign was organized, and on Arctic winters 1999/2000, 2002/2003. The maximum ozone loss rates retrieved by the Match technique for the winters and levels studied reached 6 ppbv/sunlit hour and both types of simulations could generally reproduce the observations at 2-sigma error bar level. In some cases, for example, for the Arctic winter 2002/2003 at 475 K level, an excellent agreement within 1-sigma standard deviation level was obtained. An overestimation was also found with the box model simulation at some isentropic levels for the Antarctic winter and the Arctic winter 1999/2000, indicating an overestimation of chlorine activation in the model. Loss rates in the Antarctic show signs of saturation in September, which have to be considered in the comparison. Sensitivity tests were performed with the box model in order to assess the impact of kinetic parameters of the ClO-Cl2O2 catalytic cycle and total bromine content on the ozone loss rate. These tests resulted in a maximum change in ozone loss rates of 1.2 ppbv/sunlit hour, generally in high solar zenith angle conditions. In some cases, a better agreement was achieved with fastest photolysis of Cl2O2 and additional source of total inorganic bromine but at the expense of overestimation of smaller ozone loss rates derived later in the winter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile-to-mobile (M-to-M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M-to-M multiple-input multiple-output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double-correlated Rayleigh-and-Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three-dimensional (3D) M-to-M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal-to-noise ratio per receive antenna in closed-form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the x–y plane, angle between the x–y plane and the antenna array orientation, and degree of scattering in the x–y plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of high-resolution radar observations of convective storms has been collected to evaluate such storms in the UK Met Office Unified Model during the DYMECS project (Dynamical and Microphysical Evolution of Convective Storms). The 3-GHz Chilbolton Advanced Meteorological Radar was set up with a scan-scheduling algorithm to automatically track convective storms identified in real-time from the operational rainfall radar network. More than 1,000 storm observations gathered over fifteen days in 2011 and 2012 are used to evaluate the model under various synoptic conditions supporting convection. In terms of the detailed three-dimensional morphology, storms in the 1500-m grid-length simulations are shown to produce horizontal structures a factor 1.5–2 wider compared to radar observations. A set of nested model runs at grid lengths down to 100m show that the models converge in terms of storm width, but the storm structures in the simulations with the smallest grid lengths are too narrow and too intense compared to the radar observations. The modelled storms were surrounded by a region of drizzle without ice reflectivities above 0 dBZ aloft, which was related to the dominance of ice crystals and was improved by allowing only aggregates as an ice particle habit. Simulations with graupel outperformed the standard configuration for heavy-rain profiles, but the storm structures were a factor 2 too wide and the convective cores 2 km too deep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Dermatosparaxis (Ehlers–Danlos syndrome in humans) is characterized by extreme fragility of the skin. It is due to the lack of mature collagen caused by a failure in the enzymatic processing of procollagen I. We investigated the condition in a commercial sheep flock. Hypothesis/Objectives Mutations in the ADAM metallopeptidase with thrombospondin type 1 motif, 2 (ADAMTS2) locus, are involved in the development of dermatosparaxis in humans, cattle and the dorper sheep breed; consequently, this locus was investigated in the flock. Animals A single affected lamb, its dam, the dam of a second affected lamb and the rams in the flock were studied. Methods DNA was purified from blood, PCR primers were used to detect parts of the ADAMS2 gene and nucleotide sequencing was performed using Sanger's procedure. Skin samples were examined using standard histology procedures. Results A missense mutation was identified in the catalytic domain of ADAMTS2. The mutation is predicted to cause the substitution in the mature ADAMTS2 of a valine molecule by a methionine molecule (V15M) affecting the catalytic domain of the enzyme. Both the ‘sorting intolerant from tolerant’ (SIFT) and the PolyPhen-2 methodologies predicted a damaging effect for the mutation. Three-dimensional modelling suggested that this mutation may alter the stability of the protein folding or distort the structure, causing the protein to malfunction. Conclusions and clinical importance Detection of the mutation responsible for the pathology allowed us to remove the heterozygote ram, thus preventing additional cases in the flock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An instrument is described which carries three orthogonal geomagnetic field sensors on a standard meteorological balloon package, to sense rapid motion and position changes during ascent through the atmosphere. Because of the finite data bandwidth available over the UHF radio link, a burst sampling strategy is adopted. Bursts of 9s of measurements at 3.6Hz are interleaved with periods of slow data telemetry lasting 25s. Calculation of the variability in each channel is used to determine position changes, a method robust to periods of poor radio signals. During three balloon ascents, variability was found repeatedly at similar altitudes, simultaneously in each of three orthogonal sensors carried. This variability is attributed to atmospheric motions. It is found that the vertical sensor is least prone to stray motions, and that the use of two horizontal sensors provides no additional information over a single horizontal sensor

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the use of bivariate 3d empirical orthogonal functions (EOFs) in characterising low frequency variability of the Atlantic thermohaline circulation (THC) in the Hadley Centre global climate model, HadCM3. We find that the leading two modes are well correlated with an index of the meridional overturning circulation (MOC) on decadal timescales, with the leading mode alone accounting for 54% of the decadal variance. Episodes of coherent oscillations in the sub-space of the leading EOFs are identified; these episodes are of great interest for the predictability of the THC, and could indicate the existence of different regimes of natural variability. The mechanism identified for the multi-decadal variability is an internal ocean mode, dominated by changes in convection in the Nordic Seas, which lead the changes in the MOC by a few years. Variations in salinity transports from the Arctic and from the North Atlantic are the main feedbacks which control the oscillation. This mode has a weak feedback onto the atmosphere and hence a surface climatic influence. Interestingly, some of these climate impacts lead the changes in the overturning. There are also similarities to observed multi-decadal climate variability.