3 resultados para Thiazole

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Push-pull nonlinear optical (NLO) chromophores containing thiazole and benzothiazole acceptors were synthesized and characterized. Using these chromophores a series of second-order NLO polyimides were Successfully prepared from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), pyromellitic dianhydride (PMDA) and 3,3'4,4'-benzophenone tetracarboxylic dianhydride (BTDA) by a standard condensation polymerization technique. These polyimides exhibit high glass transition temperatures ranging from 160 to 188 degrees C. UV-vis spectrum of polyimide exhibited a slight blue shift and decreases in absorption due to birefringence. From the order parameters, it was found that chromophores were aligned effectively. Using in situ poling and temperature ramping technique, the optical temperatures for corona poling were obtained. It was found that the optimal temperatures of polyimides approach their glass transition temperatures. These polyimides demonstrate relatively large d(33) values range between 35.15 and 45.20 pm/V at 532 nm. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the absence of added thiamine, Rhizobium leguminosarum bv. viciae strain 3841 does not grow in liquid medium and forms only "pin" colonies on agar plates, which contrasts with the good growth of Sinorhizobium meliloti 1021, Mesorhizobium loti 303099, and Rhizobium etli CFN42. These last three organisms have thiCOGE genes, which are essential for de novo thiamine synthesis. While R. leguminosarum bv. viciae 3841 lacks thiCOGE, it does have thiMED. Mutation of thiM prevented formation of pin colonies on agar plates lacking added thiamine, suggesting thiamine intermediates are normally present. The putative functions of ThiM, ThiE, and ThiD are 4-methyl-5-(beta-hydroxyethyl) thiazole (THZ) kinase, thiamine phosphate pyrophosphorylase, and 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) kinase, respectively. This suggests that a salvage pathway operates in R. leguminosarum, and addition of HMP and THZ enabled growth at the same rate as that enabled by thiamine in strain 3841 but elicited no growth in the thiM mutant (RU2459). There is a putative thi box sequence immediately upstream of the thiM, and a gfp-mut3.1 fusion to it revealed the presence of a promoter that is strongly repressed by thiamine. Using fluorescent microscopy and quantitative reverse transcription-PCR, it was shown that thiM is expressed in the rhizosphere of vetch and pea plants, indicating limitation for thiamine. Pea plants infected by RU2459 were not impaired in nodulation or nitrogen fixation. However, colonization of the pea rhizosphere by the thiM mutant was impaired relative to that of the wild type. Overall, the results show that a thiamine salvage pathway operates to enable growth of Rhizobium leguminosarum in the rhizosphere, allowing its survival when thiamine is limiting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty one new sodium heterosulfamates, RNHSO3Na, where the R portion contains mainly thiazole, benzothiazole, thiadiazole and pyridine ring structures, have been synthesized and their taste portfolios have been assessed. A database of 132 heterosulfamates ( both open-chain and cyclic) has been formed by combining these new compounds with an existing set of 101 heterosulfamates which were previously synthesized and for which taste data are available. Simple descriptors have been obtained using (i) measurements with Corey-Pauling-Koltun (CPK) space- filling models giving x, y and z dimensions and a volume VCPK, (ii) calculated first order molecular connectivities ((1)chi(v)) and (iii) the calculated Spartan program parameters to obtain HOMO, LUMO energies, the solvation energy E-solv and V-SPART AN. The techniques of linear (LDA) and quadratic (QDA) discriminant analysis and Tree analysis have then been employed to develop structure-taste relationships (SARs) that classify the sweet (S) and non-sweet (N) compounds into separate categories. In the LDA analysis 70% of the compounds were correctly classified ( this compares with 65% when the smaller data set of 101 compounds was used) and in the QDA analysis 68% were correctly classified ( compared to 80% previously). TheTree analysis correctly classified 81% ( compared to 86% previously). An alternative Tree analysis derived using the Cerius2 program and a set of physicochemical descriptors correctly classified only 54% of the compounds.