3 resultados para Thermostability

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tolerance to high soil and air temperature during the reproductive phase is an important component of adaptation to and and semi-arid cropping environments in groundnut. Between 10 and 22 genotypes were screened for tolerance to high air and soil temperature in controlled environments. To assess tolerance to high soil temperature, 10 genotypes were grown from start of podding to harvest at ambient (28 degrees) and high (38 degreesC) soil temperatures, and crop growth rate (CGR), pod growth rate (PGR) and partitioning (ratio PGR:CGR) measured. To assess tolerance to high air temperature during two key stages-microsporogenesis (3-6 days before flowering, DBF) and flowering, fruit-set was measured in two experiments. In the first experiment, 12 genotypes were exposed to short (3-6 days) episodes of high (38 degreesC) day air temperature at 6 DBF and at flowering. In the second experiment, 22 genotypes were exposed to 40 degreesC day air temperature for I day at 6 DBF, 3 DBF or at flowering. Cellular membrane thermostability (relative injury, RI) was also measured in these 22 genotypes. There was considerable variation among genotypes in response to high temperature, whether assessed by growth rates, fruit-set or RI. Pod weight at high soil temperature was associated with variation in CGR rather than partitioning. Flowering was more sensitive to high air temperature than microsporogenesis. Genotypes tolerant to high air temperature at microsporogenesis were not necessarily tolerant at flowering, and nor was tolerance correlated with RI. Six genotypes (796, 55-437, ICG 1236, ICGV 86021, lCGV 87281 and ICGV 92121) were identified as heat tolerant based on their performance in all tests. These experiments have shown that groundnut genotypes can be easily screened for reproductive tolerance to high air and soil temperature and that several sources of heat tolerance are available in groundnut germplasm. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel series of linear, high molecular weight polymers were synthesized by one-pot, superacid-catalyzed reaction of acenaphthenequinone (1) with aromatic hydrocarbons. The reactions were performed at room temperature in the Bronsted superacid CF3SO3H (trifluoromethanesulfonic acid, TFSA) and in a mixture of TFSA with methanesulfonic acid (MSA) and trifluoroacetic acid (TFA), which was used as both solvent and a medium for generation of electrophilic species from acenaphthenequinone. The polymer-forming reaction was found to be dependent greatly on the acidity of the reaction medium, as judged from the viscosity of the polymers obtained. Polycondensations of acenaphthenequinone with 4,4'-diphenoxybenzophenone (f), 1,3-bis(4-phenoxybenzoyl)benzene (g), 1,4-bis(4-phenoxybenzoyl)benzene (h), 1,10-bis(4-phenoxyphenyl)decane-1,10-dione (i), 2,6-diphenoxybenzonitrile), 2,6-diphenoxybenzoic acid (k), and 2-(4-biphenylyl)-6-phenylbenzoxazole (1) proceeded in a reaction medium of wide range of acidity, including pure TFSA (Hammett acidity function H-0 of pure TFSA is -14.1), whereas condensation of 1 with biphenyl, terphenyl, diphenyl ether, and 1,4-diphenoxybenzene needed a reaction medium of acidity H-0 less than -11.5. A possible reaction mechanism is suggested. The polymers obtained were found to be soluble in the common organic solvents, and flexible transparent films could be cast from the solutions. H-1 and C-13 NMR analyses of the polymers synthesized revealed their linear, highly regular structure. The polymers also possess high thermostability. Char yields for polymers 3a, 3c, 3d, and 3l in nitrogen were close to 80% at 1000 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The barley β-amylase I (Bmy1) locus encodes a starch breakdown enzyme whose kinetic properties and thermostability are critical during malt production. Studies of allelic variation at the Bmy1 locus have shown that the encoded enzyme can be commonly found in at least three distinct thermostability classes and demonstrated the nucleotide sequence variations responsible for such phenotypic differences. In order to explore the extent of sequence diversity at the Bmy1 locus in cultivated European barley, 464 varieties representing a cross-section of popular varieties grown in western Europe over the past 60 years, were genotyped for three single nucleotide polymorphisms chosen to tag the four common alleles found in the collection. One of these haplotypes, which has not been explicitly recognised in the literature as a distinct allele, was found in 95% of winter varieties in the sample. When release dates of the varieties were considered, the lowest thermostability allele (Bmy1-Sd2L) appeared to decrease in abundance over time, while the highest thermostability allele (Bmy1-Sd2H) was the rarest allele at 5.4% of the sample and was virtually confined to two-row spring varieties. Pedigree analysis was used to track transmission of particular alleles over time and highlighted issues of genetic stratification of the sample.