5 resultados para Thermography

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulsed Phase Thermography (PPT) has been proven effective on depth retrieval of flat-bottomed holes in different materials such as plastics and aluminum. In PPT, amplitude and phase delay signatures are available following data acquisition (carried out in a similar way as in classical Pulsed Thermography), by applying a transformation algorithm such as the Fourier Transform (FT) on thermal profiles. The authors have recently presented an extended review on PPT theory, including a new inversion technique for depth retrieval by correlating the depth with the blind frequency fb (frequency at which a defect produce enough phase contrast to be detected). An automatic defect depth retrieval algorithm had also been proposed, evidencing PPT capabilities as a practical inversion technique. In addition, the use of normalized parameters to account for defect size variation as well as depth retrieval from complex shape composites (GFRP and CFRP) are currently under investigation. In this paper, steel plates containing flat-bottomed holes at different depths (from 1 to 4.5 mm) are tested by quantitative PPT. Least squares regression results show excellent agreement between depth and the inverse square root blind frequency, which can be used for depth inversion. Experimental results on steel plates with simulated corrosion are presented as well. It is worth noting that results are improved by performing PPT on reconstructed (synthetic) rather than on raw thermal data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rolling Contact Fatigue (RCF) is one of the main issues that concern, at least initially, the head of the railway; progressively they can be of very high importance as they can propagate inside the material with the risk of damaging the railway. In this work, two different non-destructive techniques, infrared thermography (IRT) and fibre optics microscopy (FOM), were used in the inspection of railways for the tracing of defects and deterioration signs. In the first instance, two different approaches (dynamic and pulsed thermography) were used, whilst in the case of FOM, microscopic characterisation of the railway heads and classification of the deterioration -- damage on the railways according to the UIC (International Union of Railways) code, took place. Results from both techniques are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, IR thermography is used as a non-destructive tool for impact damage characterisation on thermoplastic E-glass/polypropylene composites for automotive applications. The aim of this experimentation was to compare impact resistance and to characterise damage patterns of different laminates, in order to provide indications for their use in components. Two E-glass/polypropylene composites, commingled ®Twintex (with three different weave structures: directional, balanced and 3-D) and random reinforced GMT, were in particular characterised. Directional and balanced Twintex were also coupled in a number of hybrid configurations with GMT to evaluate the possible use of GMT/Twintex hybrids in high-energy absorption components. The laminates were impacted using a falling weight tower, with impact energies ranging from 15 J to penetration. Using IR thermography during cooling down following a long pulse (3 s), impact damaged areas were characterised and the influence of weave structure on damage patterns was studied. IR thermography offered good accuracy for laminates with thickness not exceeding 3.5 mm: this appears to be a limit for the direct use of this method on components, where more refined signal treatment would probably be needed for impact damage characterisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal non-destructive testing (NDT) is commonly used for assessing aircraft structures. This research work evaluates the potential of pulsed -- transient thermography for locating fixtures beneath aircraft skins in order to facilitate accurate automated assembly operations. Representative aluminium and carbon fibre aircraft skin-fixture assemblies were modelled using thermal modelling software. The assemblies were also experimentally investigated with an integrated pulsed thermographic evaluation system, as well as using a custom built system incorporating a miniature un-cooled camera. Modelling showed that the presence of an air gap between skin and fixture significantly reduced the thermal contrast developed, especially in aluminium. Experimental results show that fixtures can be located to accuracies of 0.5 mm.