30 resultados para Therapeutic itineraries
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper, Bayesian decision procedures are developed for dose-escalation studies based on bivariate observations of undesirable events and signs of therapeutic benefit. The methods generalize earlier approaches taking into account only the undesirable outcomes. Logistic regression models are used to model the two responses, which are both assumed to take a binary form. A prior distribution for the unknown model parameters is suggested and an optional safety constraint can be included. Gain functions to be maximized are formulated in terms of accurate estimation of the limits of a therapeutic window or optimal treatment of the next cohort of subjects, although the approach could be applied to achieve any of a wide variety of objectives. The designs introduced are illustrated through simulation and retrospective implementation to a completed dose-escalation study. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Resumo:
Pre-eclampsia (PE) is a pregnancy-specific syndrome that is a principal cause of maternal morbidity and mortality, accounting for almost 15% of pregnancy-associated deaths. In its mild form, PE most commonly presents with the features of maternal hypertension and proteinuria but can swiftly and unpredictably become severe with many extensive and life-threatening complications. The diverse symptoms of PE have made it a difficult disease not only to define, but also to identify a causative agent for the symptoms. It has therefore proved difficult to develop specific drugs that can be used to manage the condition. This review examines the patent literature to reveal current findings that exhibit the potential to target the effects of PE with the aim of either preventing or altering the course of this life-threatening disease of pregnancy.
Resumo:
Obesity is sweeping the westernized world at a rate which far outstrips human genomic evolution, highlighting the importance of the obesogenic environment. Diet is an important component of this obesogenic environment, with certain diets (high fat, high refined carbohydrates and sugar) predisposing to overweight. On the other hand, there are also foods shown to protect against obesity and the diseases of obesity, including whole plant foods, dairy products, dietary fibre and functional foods like probiotics, prebiotics and phytochemicals. Interestingly, many of these foods mediate their health-promoting activities through the gut microbiota. The human gut microbiota itself has recently been identified as a contributory factor in this obesogenic environment, with differences observed between lean and obese. Evidence from human studies indicates that important groups of fermentative bacteria differ in abundance between lean and obese. Recently it has been suggested that anomalous microbiota composition in infancy can predispose to overweight in later life, highlighting the important role of optimal microbiota successional development, and that – as observed in laboratory animals – the gut microbiota may contribute to the aetiology of obesity. In this review we will introduce the gut microbiota, describe its interactions with major dietary components and the host, and then go on to discuss evidence indicating that the gut microbiota may contribute to the obesogenic environment. Finally, we will explore possible strategies for modulating the composition and activity of the human gut microbiota which may impact on obesity or the metabolic diseases associated with obesity. (Nutritional Therapy & Metabolism 2009; 27: 113-33)
Resumo:
Despite the publication of a few contrary indications, the general consensus seems to be that the regular consumption of probiotic cultures, perhaps accompanied by 'prebiotic' compounds, improves the healthy operation of the digestive system of a typical consumer. Whether other benefits follow is a more contentious issue, especially for a given individual. Nevertheless, the dairy industry needs to be aware of the various ideas that are currently being explored, and this brief review seeks to summarize some recent findings.
Resumo:
Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
This Account provides an overview of strategies that have been reported from our laboratories for the synthesis of targets of therapeutic interest, namely carbohydrates, and prodrugs for the treatment of melanoma. These programmes have involved the development of new synthetic methodologies including the regio- and stereoselective synthesis of specific carbohydrate isomers, and new protecting group methodologies. This review provides an insight into the progress of these research themes, and suggests some applications for the targets that are currently being explored.
Resumo:
The completion of the Human Genome Project has revealed a multitude of potential avenues for the identification of therapeutic targets. Extensive sequence information enables the identification of novel genes but does not facilitate a thorough understanding of how changes in gene expression control the molecular mechanisms underlying the development and regulation of a cell or the progression of disease. Proteomics encompasses the study of proteins expressed by a population of cells, and evaluates changes in protein expression, post-translational modifications, protein interactions, protein structure and splice variants, all of which are imperative for a complete understanding of protein function within the cell. From the outset, proteomics has been used to compare the protein profiles of cells in healthy and diseased states and as such can be used to identify proteins associated with disease development and progression. These candidate proteins might provide novel targets for new therapeutic agents or aid the development of assays for disease biomarkers. This review provides an overview of the current proteomic techniques available and focuses on their application in the search for novel therapeutic targets for the treatment of disease.
Resumo:
In this article, an overview of some of the latest developments in the field of cerebral cortex to computer interfacing (CCCI) is given. This is posed in the more general context of Brain-Computer Interfaces in order to assess advantages and disadvantages. The emphasis is clearly placed on practical studies that have been undertaken and reported on, as opposed to those speculated, simulated or proposed as future projects. Related areas are discussed briefly only in the context of their contribution to the studies being undertaken. The area of focus is notably the use of invasive implant technology, where a connection is made directly with the cerebral cortex and/or nervous system. Tests and experimentation which do not involve human subjects are invariably carried out a priori to indicate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies from this area are discussed. The paper goes on to describe human experimentation, in which neural implants have linked the human nervous system bidirectionally with technology and the internet. A view is taken as to the prospects for the future for CCCI, in terms of its broad therapeutic role.
Cannabis sativa and the endogenous cannabinoid system: therapeutic potential for appetite regulation
Resumo:
The herb Cannabis sativa (C. sativa) has been used in China and on the Indian subcontinent for thousands of years as a medicine. However, since it was brought to the UK and then the rest of the western world in the late 19th century, its use has been a source of controversy. Indeed, its psychotropic side effects are well reported but only relatively recently has scientific endeavour begun to find valuable uses for either the whole plant or its individual components. Here, we discuss evidence describing the endocannabinoid system, its endogenous and exogenous ligands and their varied effects on feeding cycles and meal patterns. Furthermore we also critically consider the mounting evidence which suggests non‐tetrahydrocannabinol phytocannabinoids play a vital role in C. sativa‐induced feeding pattern changes. Indeed, given the wide range of phytocannabinoids present in C. sativa and their equally wide range of intra‐, inter‐ and extra‐cellular mechanisms of action, we demonstrate that non‐Δ9tetrahydrocannabinol phytocannabinoids retain an important and, as yet, untapped clinical potential.
Resumo:
The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB1 receptors by the major pCB, Δ9-tetrahydrocannabinol (Δ9-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ9-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ9tetrahydrocannabivarin (Δ9-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ9-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ9-THC pCB-based medicines.
Resumo:
A novel topical codrug, naproxyl–dithranol (Nap-DTH), in which dithranol and naproxen are linked via an ester in a 1:1 ratio to form a single chemical entity, was synthesized. The antiproliferative, anti-inflammatory and toxic effects of Nap-DTH were assessed, at the cellular level, using various in vitro methods. Cultured HaCaT keratinocytes were treated with Nap-DTH, and the cellular effects were compared with those of the parent compounds, individually and as a 1:1 mixture of naproxen:dithranol to mimic 1:1 in situ liberation from Nap-DTH. The results demonstrate that Nap-DTH did not modify proliferation and only exhibited slight toxic effects after 24 h at concentrations >21 μM. At a lower concentration (3.4 μM), Nap-DTH did not alter cell proliferation or inflammation, which suggests that the codrug is therapeutically inert. Relating to this, the 1:1 mixture of naproxen:dithranol exhibited the lowest toxic effect and the highest antiproliferative effect on HaCaT keratinocytes compared to dithranol at the same concentration. Moreover, the 1:1 mixture exhibited a reduced inflammatory effect compared to dithranol alone, as reflected by the upregulation of cyclooxygenase-2 by 45% and 136%, respectively. In spite of the 1:1 mixture showing a greater downregulation of Ki-67 and a 2-fold reduction of proliferating cell nuclear antigen (both cellular markers of proliferation) than dithranol, dithranol showed a much greater induction of cleaved caspase-3 protein expression (upregulated by 287%, compared to 85% for the 1:1 mixture). This suggests that when dithranol was administered with naproxen, inhibition of cell growth plays a more important role in the antiproliferation effects than the induction of apoptotic cell death. These results confirm that the codrug would lead to a better therapeutic profile and fewer adverse effects compared to its parent compounds.