41 resultados para The Irish Transport and General Workers’ Union

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004, and once launched, CloudSat will orbit in formation as part of a constellation of satellites (the A-Train) that includes NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (CALIPSO), and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the CALIPSO lidar footprint and the other measurements of the constellation. The precision and near simultaneity of this overlap creates a unique multisatellite observing system for studying the atmospheric processes essential to the hydrological cycle.The vertical profiles of cloud properties provided by CloudSat on the global scale fill a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring these profiles requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with data from other active and passive sensors of the constellation. This paper describes the underpinning science and general overview of the mission, provides some idea of the expected products and anticipated application of these products, and the potential capability of the A-Train for cloud observations. Notably, the CloudSat mission is expected to stimulate new areas of research on clouds. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA's JPL, the Canadian Space Agency, Colorado State University, the U.S. Air Force, and the U.S. Department of Energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerosol sources, transport, and sinks are simulated, and aerosol direct radiative effects are assessed over the Indian Ocean for the Indian Ocean Experiment (INDOEX) Intensive Field Phase during January to March 1999 using the Laboratoire de Me´te´orologie Dynamique (LMDZT) general circulation model. The model reproduces the latitudinal gradient in aerosol mass concentration and optical depth (AOD). The model-predicted aerosol concentrations and AODs agree reasonably well with measurements but are systematically underestimated during high-pollution episodes, especially in the month of March. The largest aerosol loads are found over southwestern China, the Bay of Bengal, and the Indian subcontinent. Aerosol emissions from the Indian subcontinent are transported into the Indian Ocean through either the west coast or the east coast of India. Over the INDOEX region, carbonaceous aerosols are the largest contributor to the estimated AOD, followed by sulfate, dust, sea salt, and fly ash. During the northeast winter monsoon, natural and anthropogenic aerosols reduce the solar flux reaching the surface by 25 W m�2, leading to 10–15% less insolation at the surface. A doubling of black carbon (BC) emissions from Asia results in an aerosol single-scattering albedo that is much smaller than in situ measurements, reflecting the fact that BC emissions are not underestimated in proportion to other (mostly scattering) aerosol types. South Asia is the dominant contributor to sulfate aerosols over the INDOEX region and accounts for 60–70% of the AOD by sulfate. It is also an important but not the dominant contributor to carbonaceous aerosols over the INDOEX region with a contribution of less than 40% to the AOD by this aerosol species. The presence of elevated plumes brings significant quantities of aerosols to the Indian Ocean that are generated over Africa and Southeast and east Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The entropy budget is calculated of the coupled atmosphere–ocean general circulation model HadCM3. Estimates of the different entropy sources and sinks of the climate system are obtained directly from the diabatic heating terms, and an approximate estimate of the planetary entropy production is also provided. The rate of material entropy production of the climate system is found to be ∼50 mW m−2 K−1, a value intermediate in the range 30–70 mW m−2 K−1 previously reported from different models. The largest part of this is due to sensible and latent heat transport (∼38 mW m−2 K−1). Another 13 mW m−2 K−1 is due to dissipation of kinetic energy in the atmosphere by friction and Reynolds stresses. Numerical entropy production in the atmosphere dynamical core is found to be about 0.7 mW m−2 K−1. The material entropy production within the ocean due to turbulent mixing is ∼1 mW m−2 K−1, a very small contribution to the material entropy production of the climate system. The rate of change of entropy of the model climate system is about 1 mW m−2 K−1 or less, which is comparable with the typical size of the fluctuations of the entropy sources due to interannual variability, and a more accurate closure of the budget than achieved by previous analyses. Results are similar for FAMOUS, which has a lower spatial resolution but similar formulation to HadCM3, while more substantial differences are found with respect to other models, suggesting that the formulation of the model has an important influence on the climate entropy budget. Since this is the first diagnosis of the entropy budget in a climate model of the type and complexity used for projection of twenty-first century climate change, it would be valuable if similar analyses were carried out for other such models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road transport and shipping are copious sources of aerosols, which exert a 9 significant radiative forcing, compared to, for example, the CO2 emitted by these sectors. An 10 advanced atmospheric general circulation model, coupled to a mixed-layer ocean, is used to 11 calculate the climate response to the direct radiative forcing from such aerosols. The cases 12 considered include imposed distributions of black carbon and sulphate aerosols from road 13 transport, and sulphate aerosols from shipping; these are compared to the climate response 14 due to CO2 increases. The difficulties in calculating the climate response due to small 15 forcings are discussed, as the actual forcings have to be scaled by large amounts to enable a 16 climate response to be easily detected. Despite the much greater geographical inhomogeneity 17 in the sulphate forcing, the patterns of zonal and annual-mean surface temperature response 18 (although opposite in sign) closely resembles that resulting from homogeneous changes in 19 CO2. The surface temperature response to black carbon aerosols from road transport is shown 20 to be notably non-linear in scaling applied, probably due to the semi-direct response of clouds 21 to these aerosols. For the aerosol forcings considered here, the most widespread method of 22 calculating radiative forcing significantly overestimates their effect, relative to CO2, 23 compared to surface temperature changes calculated using the climate model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impacts of current and future changes in climate have been investigated for Irish vegetation. Warming has been observed over the last two decades, with impacts that are also strongly influenced by natural oscillations of the surrounding ocean, seen as fluctuations in the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. Satellite observations show that vegetation greenness increases in warmer years, a feature mirrored by increases in net ecosystem production observed for a grassland and a plantation forest. An ensemble of general circulation model simulations of future climates indicate temperature rises over the twenty-first century ranging from 1°C to 7°C, depending on future scenarios of greenhouse gas emissions. Net primary production is simulated to increase under all scenarios, due to the positive impacts of rising temperature, a modest rise of precipitation and rising carbon dioxide concentrations. In an optimistic scenario of reducing future emissions, CO2 concentration is simulated to flatten from about 2070, although temperatures continue to increase. Under this scenario Ireland could become a source of carbon, whereas under all other emission scenarios Ireland is a sink for carbon that may increase by up to three-fold over the twenty-first century. A likely and unavoidable impact of changing climate is the arrival of alien plant species, which may disrupt ecosystems and exert negative impacts on native biodiversity. Alien species arrive continually, with about 250 dated arrivals in the twentieth century. A simulation model indicates that this rate of alien arrival may increase by anything between two and ten times, dependent on the future climatic scenario, by 2050. Which alien species may become severely disruptive is, however, not known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our knowledge of stratospheric O3-N2O correlations is extended, and their potential for model-measurement comparison assessed, using data from the Atmospheric Chemistry Experiment (ACE) satellite and the Canadian Middle Atmosphere Model (CMAM). ACE provides the first comprehensive data set for the investigation of interhemispheric, interseasonal, and height-resolved differences of the O_3-N_2O correlation structure. By subsampling the CMAM data, the representativeness of the ACE data is evaluated. In the middle stratosphere, where the correlations are not compact and therefore mainly reflect the data sampling, joint probability density functions provide a detailed picture of key aspects of transport and mixing, but also trace polar ozone loss. CMAM captures these important features, but exhibits a displacement of the tropical pipe into the Southern Hemisphere (SH). Below about 21 km, the ACE data generally confirm the compactness of the correlations, although chemical ozone loss tends to destroy the compactness during late winter/spring, especially in the SH. This allows a quantitative comparison of the correlation slopes in the lower and lowermost stratosphere (LMS), which exhibit distinct seasonal cycles that reveal the different balances between diabatic descent and horizontal mixing in these two regions in the Northern Hemisphere (NH), reconciling differences found in aircraft measurements, and the strong role of chemical ozone loss in the SH. The seasonal cycles are qualitatively well reproduced by CMAM, although their amplitude is too weak in the NH LMS. The correlation slopes allow a "chemical" definition of the LMS, which is found to vary substantially in vertical extent with season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in the strength of the stratospheric Lagrangian mean meridional or Brewer-Dobson circulation and horizontal mixing into the tropics over the past three decades are examined using observations of stratospheric mean age of air and ozone. We use a simple representation of the stratosphere, the tropical leaky pipe (TLP) model, guided by mean meridional circulation and horizontal mixing changes in several reanalyses data sets and chemistry climate model (CCM) simulations, to help elucidate reasons for the observed changes in stratospheric mean age and ozone. We find that the TLP model is able to accurately simulate multiyear variability in ozone following recent major volcanic eruptions and the early 2000s sea surface temperature changes, as well as the lasting impact on mean age of relatively short-term circulation perturbations. We also find that the best quantitative agreement with the observed mean age and ozone trends over the past three decades is found assuming a small strengthening of the mean circulation in the lower stratosphere, a moderate weakening of the mean circulation in the middle and upper stratosphere, and a moderate increase in the horizontal mixing into the tropics. The mean age trends are strongly sensitive to trends in the horizontal mixing into the tropics, and the uncertainty in the mixing trends causes uncertainty in the mean circulation trends. Comparisons of the mean circulation and mixing changes suggested by the measurements with those from a recent suite of CCM runs reveal significant differences that may have important implications on the accurate simulation of future stratospheric climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present measurements of NO, NOy, O3, and N2O within the lowermost stratosphere (LMS) over Europe obtained during the SPURT project. The measurements cover all seasons between November 2001 and July 2003. They span a broad band of latitudes from 30° N to 75° N and a potential temperature range from 290 to 380 K. The measurements represent a comprehensive data set of these tracers and reveal atmospheric transport processes that influence tracer distributions in the LMS. Median mixing ratios of stratospheric tracers in equivalent latitude-potential temperature coordinates show a clear seasonal cycle related to the Brewer-Dobson circulation, with highest values in spring and lowest values in autumn. Vertical tracer profiles show strong gradients at the extratropical tropopause, suggesting that vertical (cross-isentropic) mixing is reduced above the tropopause. Pronounced meridional gradients in the tracer mixing ratios are found on potential temperature surfaces in the LMS. This suggests strongly reduced mixing along isentropes. Concurrent large gradients in static stability in the vertical direction, and of PV in the meridional direction, suggest the presence of a mixing barrier. Seasonal cycles were found in the correlation slopes ΔO3/ΔN2O and ΔNOy/ΔN2O well above the tropopause. Absolute slope values are smallest in spring indicating chemically aged stratospheric air originating from high altitudes and latitudes. Larger values were measured in summer and autumn suggesting that a substantial fraction of air takes a "short-cut" from the tropical tropopause region into the extratropical LMS. The seasonal change in the composition of the LMS has direct implications for the ozone chemistry in this region. Comparisons of measured NO with the critical NO value at which net ozone production changes from negative to positive, imply ozone production up to 20 K above the local tropopause in spring, up to 30 K in summer, and up to 40 K in autumn. Above these heights, and in winter, net ozone production is negative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atmospheric composition of the central North Atlantic region has been sampled using the FAAM BAe146 instrumented aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign, part of the wider International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). This paper presents an overview of the ITOP campaign. Between late July and early August 2004, twelve flights comprising 72 hours of measurement were made in a region from approximately 20 to 40°W and 33 to 47°N centered on Faial Island, Azores, ranging in altitude from 50 to 9000 m. The vertical profiles of O3 and CO are consistent with previous observations made in this region during 1997 and our knowledge of the seasonal cycles within the region. A cluster analysis technique is used to partition the data set into air mass types with distinct chemical signatures. Six clusters provide a suitable balance between cluster generality and specificity. The clusters are labeled as biomass burning, low level outflow, upper level outflow, moist lower troposphere, marine and upper troposphere. During this summer, boreal forest fire emissions from Alaska and northern Canada were found to provide a major perturbation of tropospheric composition in CO, PAN, organic compounds and aerosol. Anthropogenic influenced air from the continental boundary layer of the USA was clearly observed running above the marine boundary layer right across the mid-Atlantic, retaining high pollution levels in VOCs and sulfate aerosol. Upper level outflow events were found to have far lower sulfate aerosol, resulting from washout on ascent, but much higher PAN associated with the colder temperatures. Lagrangian links with flights of other aircraft over the USA and Europe show that such signatures are maintained many days downwind of emission regions. Some other features of the data set are highlighted, including the strong perturbations to many VOCs and OVOCs in this remote region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

North African dust is important for climate through its direct radiative effect on solar and terrestrial radiation and its role in the biogeochemical system. The Dust Outflow and Deposition to the Ocean project (DODO) aimed to characterize the physical and optical properties of airborne North African dust in two seasons and to use these observations to constrain model simulations, with the ultimate aim of being able to quantify the deposition of iron to the North Atlantic Ocean. The in situ properties of dust from airborne campaigns measured during February and August 2006, based at Dakar, Senegal, are presented here. Average values of the single scattering albedo (0.99, 0.98), mass specific extinction (0.85 m^2 g^-1 , 1.14 m^2 g^-1 ), asymmetry parameter (0.68, 0.68), and refractive index (1.53--0.0005i,1.53--0.0014i) for the accumulation mode were found to differ by varying degrees between the dry and wet season, respectively. It is hypothesized that these differences are due to different source regions and transport processes which also differ between the DODO campaigns. Elemental ratios of Ca/Al were found to differ between the dry and wet season (1.1 and 0.5, respectively). Differences in vertical profiles are found between seasons and between land and ocean locations and reflect the different dynamics of the seasons. Using measurements of the coarse mode size distribution and illustrative Mie calculations, the optical properties are found to be very sensitive to the presence and amount of coarse mode of mineral dust, and the importance of accurate measurements of the coarse mode of dust is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Resolution 1556, the Security Council, with the conflict in Darfur clearly in mind, determined that the ‘situation in Sudan constitutes a threat to international peace and security and to stability in the region’. This article focuses on the response by the United Nations, in particular the Security Council, and the African Union to the Darfur conflict. It begins by exploring the role of peacekeeping operations and regional arrangements or agencies in the overarching architecture of international peace and security. Having laid this frame of reference, it then looks at the modalities of peacekeeping in Darfur. These operations began with the African Union acting in isolation but have transitioned to an increasingly important role being played by the United Nations and a hybrid peacekeeping presence. Finally, this article asks whether, assuming that a legally dispositive conclusion can be drawn that genocide has taken place in Darfur since the outbreak of hostilities there in 2003, there exists a legal justification, or even obligation, for non-compliance by states with the sanctions regime established by Security Council Resolutions 1556 and 1591. This regime of sanctions has played an important part in the Security Council's approach to Darfur but has been, unfortunately, left largely unexamined from the standpoint of international legality.