31 resultados para The Folding Wife

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

LRRK2 is a 250 kDa multidomain protein, mutations in which cause familial Parkinson's disease. Previously, we have demonstrated that the R1441C mutation in the ROC domain decreases GTPase activity. Here we show that the R1441C alters the folding properties of the ROC domain, lowering its thermodynamic stability. Similar to small GTPases, binding of different guanosine nucleotides alters the stability of the ROC domain, suggesting that there is an alteration in conformation dependent on GDP or GTP occupying the active site. GTP/GDP bound state also alters the self-interaction of the ROC domain, accentuating the impact of the R1441C mutation on this property. These data suggest a mechanism whereby the R1441C mutation can reduce the GTPase activity of LRRK2, and highlights the possibility of targeting the stability of the ROC domain as a therapeutic avenue in LRRK2 disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article considers cinematic time in James Benning’s film, casting a glance (2007), in relation to its subject, Robert Smithson’s 1970 earthwork Spiral Jetty, and his film of the same name. The radicalism of Smithson’s thinking on time has been widely acknowledged, and his influence continues to pervade contemporary artistic practice. The relationship of Benning’s films with this legacy may appear somewhat oblique, given their apparent phenomenological rendition of ‘real time’. However, closer examination of Benning’s formal strategies reveals a more complex temporal construction, characterized by uncertain intervals that interrupt the folding of cinematic time into the flow of consciousness. Smithson’s film uses cinematic analogy to gesture towards vast reaches of geological time; Benning’s film creates a simulated timescale to evoke the short history of the earthwork itself. Smithson’s embrace of the entropic was a counter-cultural stance at the end of the1960s, but under the shadow of ecological disaster, this orientation has come to appear melancholy and romantic rather than radical. Benning’s film returns the jetty to anthropic time, but raises questions about the ways we inhabit time. His practice of working with ‘borrowed time’ is particularly suited to the cultural and historical moment of his later work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The i-motif structures are formed by oligonucleotides containing cytosine tracts under acidic conditions. The folding of the i-motif under physiological conditions is of great interest because of its biological role. In this study, we investigated the effect of the intra-strand cross-link on the stability of the i-motif structure. The 4-vinyl-substituted analog of thymidine (T-vinyl) was incorporated into the 5′-end of the human telomere complementary strand, which formed the intra-strand cross-link with the internal adenine. The intra-strand cross-linked i-motif displayed CD spectra similar to that of the natural i-motif at acidic pH, which was transformed into a random coil with the increasing pH. The pH midpoint for the transition from the i-motif to random coil increased from pH 6.1 for the natural one to pH 6.8 for the cross-linked one. The thermodynamic parameters were obtained by measuring the thermal melting behaviors by CD and UV, and it was determined that the intra-strand cross-linked i-motif is stabilized due to a favorable entropy effect. Thus, this study has clearly indicated the validity of the intra-strand cross-linking for stabilization of the i-motif structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biologically-inspired peptide sequences have been explored as auxiliaries to mediate self-assembly of synthetic macromolecules into hierarchically organized solution and solid state nanostructures. Peptide sequences inspired by the coiled coil motif and "switch" peptides, which can adopt both amphiphilic alpha-helical and beta-strand conformations, were conjugated to poly(ethylene glycol) (PEG). The solution and solid state self-assembly of these materials was investigated using a variety of spectroscopic, scattering and microscopic techniques. These experiments revealed that the folding and organization properties of the peptide sequences are retained upon conjugation of PEG and that they provide the driving force for the formation of the different nanoscale structures which were observed. The possibility of using defined peptide sequences to direct structure formation of synthetic polymers together with the potential of peptide sequences to induce a specific biological response offers interesting prospects for the development of novel self-assembled and biologically active materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chaperone/usher pathway assembles surface virulence organelles of Gram-negative bacteria, consisting of fibers of linearly polymerized protein subunits. Fiber subunits are connected through 'donor strand complementation': each subunit completes the immunoglobulin (Ig)-like fold of the neighboring subunit by donating the seventh β-strand in trans. Whereas the folding of Ig domains is a fast first-order process, folding of Ig modules into the fiber conformation is a slow second-order process. Periplasmic chaperones separate this process in two parts by forming transient complexes with subunits. Interactions between chaperones and subunits are also based on the principle of donor strand complementation. In this study, we have performed mutagenesis of the binding motifs of the Caf1M chaperone and Caf1 capsular subunit from Yersinia pestis and analyzed the effect of the mutations on the structure, stability, and kinetics of Caf1M-Caf1 and Caf1-Caf1 interactions. The results suggest that a large hydrophobic effect combined with extensive main-chain hydrogen bonding enables Caf1M to rapidly bind an early folding intermediate of Caf1 and direct its partial folding. The switch from the Caf1M-Caf1 contact to the less hydrophobic, but considerably tighter and less dynamic Caf1-Caf1 contact occurs via the zip-out-zip-in donor strand exchange pathway with pocket 5 acting as the initiation site. Based on these findings, Caf1M was engineered to bind Caf1 faster, tighter, or both faster and tighter. To our knowledge, this is the first successful attempt to rationally design an assembly chaperone with improved chaperone function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the increasing awareness of protein folding disorders, the explosion of genomic information, and the need for efficient ways to predict protein structure, protein folding and unfolding has become a central issue in molecular sciences research. Molecular dynamics computer simulations are increasingly employed to understand the folding and unfolding of proteins. Running protein unfolding simulations is computationally expensive and finding ways to enhance performance is a grid issue on its own. However, more and more groups run such simulations and generate a myriad of data, which raises new challenges in managing and analyzing these data. Because the vast range of proteins researchers want to study and simulate, the computational effort needed to generate data, the large data volumes involved, and the different types of analyses scientists need to perform, it is desirable to provide a public repository allowing researchers to pool and share protein unfolding data. This paper describes efforts to provide a grid-enabled data warehouse for protein unfolding data. We outline the challenge and present first results in the design and implementation of the data warehouse.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Most gram-negative pathogens express fibrous adhesive virulence organelles that mediate targeting to the sites of infection. The F1 capsular antigen from the plague pathogen Yersinia pestis consists of linear fibers of a single subunit (Caf1) and serves as a prototype for nonpilus organelles assembled via the chaperone/usher pathway. Genetic data together with high-resolution X-ray structures corresponding to snapshots of the assembly process reveal the structural basis of fiber formation. Comparison of chaperone bound Caf1 subunit with the subunit in the fiber reveals a novel type of conformational change involving the entire hydrophobic core of the protein. The observed conformational change suggests that the chaperone traps a high-energy folding intermediate of Caf1. A model is proposed in which release of the subunit allows folding to be completed, driving fiber formation.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The possibility that a sub domain of a C clade HIV-1 gp120 could act as an effective immunogen was investigated. To do this, the outer domain ( OD) of gp120(CN54) was expressed and characterized in a construct marked by a re-introduced conformational epitope for MAb 2G12. The expressed sequence showed efficient epitope retention on the isolated ODCN54 suggesting authentic folding. To facilitate purification and subsequent immunogenicity ODCN54 was fused to the Fc domain of human IgGl. Mice were immunised with the resulting fusion proteins and also with gp120(CN54)-Fc and gp120 alone. Results: Fusion to Fc was found to stimulate antibody titre and Fc tagged ODCN54 was substantially more immunogenic than non-tagged gp120. Immunogenicity appeared the result of Fc facilitated antigen processing as immunisation with an Fc domain mutant that reduced binding to the FcR lead to a reduction in antibody titre when compared to the parental sequence. The breadth of the antibody response was assessed by serum reaction with five overlapping fragments of gp120(CN54) expressed as GST fusion proteins in bacteria. A predominant anti-inner domain and anti-V3C3 response was observed following immunisation with gp120(CN54)-Fc and an anti-V3C3 response to the ODCN54-Fc fusion. Conclusion: The outer domain of gp120(CN54) is correctly folded following expression as a C terminal fusion protein. Immunogenicity is substantial when targeted to antigen presenting cells but shows V3 dominance in the polyvalent response. The gp120 outer domain has potential as a candidate vaccine component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure. However, as some structure is likely to exist we have investigated the use of an established protein refolding technology, fusion to green fluorescence protein (GFP), as a method to examine the refolding of the amino terminal domain of mouse prion protein. Results: Fusion proteins of PrPc and GFP were expressed at high level in E. coli and could be purified to near homogeneity as insoluble inclusion bodies. Following denaturation, proteins were diluted into a refolding buffer whereupon GFP fluorescence recovered with time. Using several truncations of PrPc the rate of refolding was shown to depend on the prion sequence expressed. In a variation of the format, direct observation in E. coli, mutations introduced randomly in the PrPc protein sequence that affected folding could be selected directly by recovery of GFP fluorescence. Conclusion: Use of GFP as a measure of refolding of PrPc fusion proteins in vitro and in vivo proved informative. Refolding in vitro suggested a local structure within the amino terminal domain while direct selection via fluorescence showed that as little as one amino acid change could significantly alter folding. These assay formats, not previously used to study PrP folding, may be generally useful for investigating PrPc structure and PrPc-ligand interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formation and rearrangement of disulfide bonds during the correct folding of nascent proteins is modulated by a family of enzymes known as thiol isomerases, which include protein disulfide isomerase (PDI), endoplasmic reticulum protein 5 (ERP5), and ERP57. Recent evidence supports an alternative role for this family of proteins on the surface of cells, where they are involved in receptor 'remodeling and recognition. In platelets, blocking PDI with inhibitory antibodies inhibits a number of platelet activation pathways, including aggregation, secretion, and fibrinogen binding. Analysis of human platelet membrane fractions identified the presence of the thiol isomerase protein ERP5. Further study showed that ERP5 is resident mainly on platelet intracellular membranes, although it is rapidly recruited to the cell, surface in response to a range of platelet agonists. Blocking cell-surface ERP5 using inhibitory antibodies leads to a decrease in platelet aggregation in response to agonists, and a decrease in fibrinogen binding and P-selectin exposure. It is Possible that this is based on the disruption of integrin function, as we observed that ERP5 becomes physically associated with the integrin beta(3) subunit during platelet stimulation. These results provide new insights into the involvement of thiol isomerases and regulation of platelet activation. (C) 2005 by The American Society of Hematology.