6 resultados para Tests accuracy
em CentAUR: Central Archive University of Reading - UK
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
This article addresses the question of how far working memory may affect second language (L2) learners' improvement in spoken language during a period of immersion. Research is presented testing the hypothesis that individual differences in working memory (WM) capacity are associated with individual variation in improvements in oral production of questions in English. Thirty-two Chinese adult speakers of English were tested, before and after a year's postgraduate study in the United Kingdom, to measure grammatical accuracy and fluency using a question elicitation task, and to measure WM using a battery of first language (L1) and L2 WM tests. Story recall in L1 (Mandarin) was significantly associated with individuals' improvement in oral grammatical measures (p < .05). However, there was no significant mean improvement across the cohort in grammatical accuracy, although there was for fluency. The findings suggest that WM may aid certain aspects of individuals' L2 oral proficiency during academic immersion through postgraduate study. They also indicate that academic immersion in itself can lead to improvements in oral proficiency, independent of WM capacity, but there is no general guarantee of significant grammatical change. Further research to clarify the opportunities for input and interaction available in academic immersion settings is called for.
Resumo:
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are entered into group-level statistical tests such as the t-test. In the current work, we argue that the by-participant analysis, regardless of the accuracy measurements used, would produce a substantial inflation of Type-1 error rates, when a random item effect is present. A mixed-effects model is proposed as a way to effectively address the issue, and our simulation studies examining Type-1 error rates indeed showed superior performance of mixed-effects model analysis as compared to the conventional by-participant analysis. We also present real data applications to illustrate further strengths of mixed-effects model analysis. Our findings imply that caution is needed when using the by-participant analysis, and recommend the mixed-effects model analysis.
Resumo:
We present an analysis of the accuracy of the method introduced by Lockwood et al. (1994) for the determination of the magnetopause reconnection rate from the dispersion of precipitating ions in the ionospheric cusp region. Tests are made by applying the method to synthesised data. The simulated cusp ion precipitation data are produced by an analytic model of the evolution of newly-opened field lines, along which magnetosheath ions are firstly injected across the magnetopause and then dispersed as they propagate into the ionosphere. The rate at which these newly opened field lines are generated by reconnection can be varied. The derived reconnection rate estimates are then compared with the input variation to the model and the accuracy of the method assessed. Results are presented for steady-state reconnection, for continuous reconnection showing a sine-wave variation in rate and for reconnection which only occurs in square wave pulses. It is found that the method always yields the total flux reconnected (per unit length of the open-closed field-line boundary) to within an accuracy of better than 5%, but that pulses tend to be smoothed so that the peak reconnection rate within the pulse is underestimated and the pulse length is overestimated. This smoothing is reduced if the separation between energy channels of the instrument is reduced; however this also acts to increase the experimental uncertainty in the estimates, an effect which can be countered by improving the time resolution of the observations. The limited time resolution of the data is shown to set a minimum reconnection rate below which the method gives spurious short-period oscillations about the true value. Various examples of reconnection rate variations derived from cusp observations are discussed in the light of this analysis.
Resumo:
Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.