4 resultados para Test-organism

em CentAUR: Central Archive University of Reading - UK


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC(50)s for 14 and 28 days were 5311 and 5395 mug(Pb) g(soil)(-1) respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 mug(Pb) g(soil)(-1). The concentration of lead in the worms was determined at various sampling times. Uptake at so' Sol both concentrations was linear with time. Worms in the 5000 mug g(-1) soil accumulated lead at a faster rate (3.16 mug Pb g(tissue)(-1) day(-1)) tiss than those in the 3000 mug g(-1) soil (2.21 mug Pb-tissue g(-1) day(-1)). The third experiment was a timed experiment with worms cultivated in tiss soil containing 7000 mugPb g(soil)(-1). Soil and lead nitrate solution were mixed and stored at 20 degreesC. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 It when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration time of artificially amended Pb-bearing soils increases the bioavailability of Pb decreases. Thus addition of worms shortly after addition of Pb to soils may result in the over-estimate of Pb toxicity to worms. The current OECD acute worm toxicity test fails to take these two phenomena into account thereby reducing the environmental relevance of the contaminant toxicities it is used to calculate. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However. it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review. aspects of the life history, ecology, and ecotoxicology of F candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F candida using the protocol published by the International Standards Organization in 1999.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Folsomia candida Willem 1902, a member of the order Collembola (colloquially called springtails), is a common and widespread arthropod that occurs in soils throughout the world. The species is parthenogenetic and is easy to maintain in the laboratory on a diet of granulated dry yeast. F. candida has been used as a "standard" test organism for more than 40 years for estimating the effects of pesticides and environmental pollutants on nontarget soil arthropods. However. it has also been employed as a model for the investigation of numerous other phenomena such as cold tolerance, quality as a prey item, and effects of microarthropod grazing on pathogenic fungi and mycorrhizae of plant roots. In this comprehensive review. aspects of the life history, ecology, and ecotoxicology of F candida are covered. We focus on the recent literature, especially studies that have examined the effects of soil pollutants on reproduction in F candida using the protocol published by the International Standards Organization in 1999.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Very few studies have analyzed the dependence of population growth rate on population density, and even fewer have considered interaction effects of density and other stresses, such as exposure to toxic chemicals. Yet without such studies we cannot know whether chemicals harmful at low density have effects on carrying capacity or, conversely, whether chemicals reducing carrying capacity are also harmful at low density, impeding a population's capacity to recover from disturbance. This study examines the combined effects of population density and a toxicant (fluoranthene) on population growth rate (pgr) and carrying capacity using the deposit-feeding polychaete Capitella sp. I as a test organism. Populations were initiated with a stable age distribution, and population density and age/size distribution were followed during a period of 28 wk. Fluoranthene (FLU), population density, and their interaction influenced population growth rate. Population growth rate declined linearly with the logarithm of population biomass, but the slope of the relationship was steeper for the control populations than for populations exposed to 50 mug FLU/(g sediment dry mass). Populations exposed to 150 mug FLU/(g sediment dry mass) went extinct after 8 wk of exposure. Despite concerns that toxicant effects would be exacerbated at high density, we found the reverse to be the case, and effects of fluoranthene on population growth rate were much reduced in the region of carrying capacity. Fluoranthene did. reduce carrying capacity by 46%, and this could haven important implications for interacting species and/or sediment biogeochemical processes.